
UDIT: UNIVERSIDAD DE DISEÑO, INNOVACIÓN Y TECNOLOGÍA UDIT: UNIVERSIDAD DE DISEÑO, INNOVACIÓN Y TECNOLOGÍA

ÁGORA CREATIVA ÁGORA CREATIVA

Artículos científicos INVESTIGACIÓN

29-4-2019

The full-reducing Krivine abstract machine KN simulates pure The full-reducing Krivine abstract machine KN simulates pure

normal-order reduction in lockstep: A proof via corresponding normal-order reduction in lockstep: A proof via corresponding

calculus calculus

Álvaro García-Pérez

Pablo Nogueira
Universidad de Diseño, Innovación y Tecnología, UDIT

Follow this and additional works at: https://sciencevalue.udit.es/articulos_cientificos

Recommended Citation Recommended Citation
GARCÍA-PÉREZ, Á., & NOGUEIRA, P. (2019). The full-reducing Krivine abstract machine KN simulates pure
normal-order reduction in lockstep: A proof via corresponding calculus. Journal of Functional
Programming, 29, e7. doi:10.1017/S0956796819000017

This Article is brought to you for free and open access by the INVESTIGACIÓN at ÁGORA CREATIVA. It has been
accepted for inclusion in Artículos científicos by an authorized administrator of ÁGORA CREATIVA. For more
information, please contact biblioteca@esne.es.

https://sciencevalue.udit.es/
https://sciencevalue.udit.es/
https://sciencevalue.udit.es/
https://sciencevalue.udit.es/articulos_cientificos
https://sciencevalue.udit.es/investigacion
https://sciencevalue.udit.es/articulos_cientificos?utm_source=sciencevalue.udit.es%2Farticulos_cientificos%2F116&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:biblioteca@esne.es

JFP 29, e7, 38 pages, 2019. c© Cambridge University Press 2019 1
doi:10.1017/S0956796819000017

The full-reducing Krivine abstract machine KN
simulates pure normal-order reduction in

lockstep: A proof via corresponding calculus

Á L V A R O G A R C Í A - P É R E Z
IMDEA Software Institute, Campus de Montegancedo s/n,

28223 Pozuelo de Alarcon, Madrid, Spain
(e-mail: alvaro.garcia.perez@imdea.org)

P A B L O N O G U E I R A
ESNE, University School of Design, Innovation and Technology,

Av. de Alfonso XIII, 97, 28016, Madrid, Spain
(e-mail: pablo.nogueira@esne.es)

Abstract

We exploit the idea of proving properties of an abstract machine by using a corresponding semantic
artefact better suited to their proof. The abstract machine is an improved version of Pierre Crégut’s
full-reducing Krivine machine KN. The original version works with closed terms of the pure lambda
calculus with de Bruijn indices. The improved version reduces in similar fashion but works on clo-
sures where terms may be open. The corresponding semantic artefact is a structural operational
semantics of a calculus of closures whose reduction relation is purposely a reduction strategy. As
shown in previous work, improved KN and the structural operational semantics ‘correspond’, i.e.
both artefacts realise the same reduction strategy. In this paper, we prove in the calculus of clo-
sures that the reduction strategy simulates in lockstep (at every reduction step) the complete and
standard normal-order strategy (i.e. leftmost reduction to normal form) of the pure lambda calcu-
lus. The simulation is witnessed by a substitution function from closures of the closure calculus to
pure terms of the pure lambda calculus. Thus, KN also simulates normal-order in lockstep by the
correspondence. This result is stronger than the known proof that KN is complete, for in the pure
lambda calculus there are complete but non-standard strategies. The lockstep simulation proof con-
sists of straightforward structural inductions, thanks to three properties of the closure calculus we
call ‘index alignment’, ‘parameters-as-levels’ and ‘balanced derivations’. The first two come from
KN. Thanks to these properties, a proof in a calculus of closures involving de Bruijn indices and de
Bruijn levels is unproblematic. There is no lexical adjustment at binding lookup, on-the-fly alpha-
conversion or recursive traversals of the term to deal with bound and free variables as in other calculi.
This paper contributes to the framework for environment machines of Biernacka and Danvy a full-
reducing open-terms closure calculus, its corresponding abstract machine, and a lockstep simulation
proof via a substitution function.

1 Introduction

At the core of programming-language and proof-assistant implementations, we predom-
inantly find an implementation of an abstract machine (Diehl et al., 2000). An abstract
machine is a ‘semantic artefact’ in the sense that it is a specification of an operational
semantics (Danvy, 2009; Danvy et al., 2011). More concretely, an abstract machine is a

https://doi.org/10.1017/S0956796819000017 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000017
mailto:alvaro.garcia.perez@imdea.org
https://orcid.org/0000-0002-8706-0027
mailto:pablo.nogueira@esne.es
https://doi.org/10.1017/S0956796819000017

2 Á. García-Pérez and P. Nogueira

first-order state transition function that reduces directly the terms of a core language with
the help of auxiliary data structures such as stacks, environments and stores. An abstract
machine abstracts away the low-level and platform-specific details of a concrete physical
machine, while remaining closer to the latter than other styles of operational semantics
such as structural operational semantics (Plotkin, 1981), context-based reduction seman-
tics (Felleisen, 1987) and natural semantics (Kahn, 1987). All these operational-semantics
styles provide alternative ways to define the same reduction strategy of an underlying term
calculus (Danvy et al., 2011; Plotkin, 1975).

A reduction strategy specifies a fixed, deterministic order in which to reduce the redexes
(short for reducible expressions) of a term. The reduction of a redex, called a contraction
in the jargon, is typically accompanied by other administrative steps, e.g. location of the
redex and expansion of intermediate terms.

Semantic artefacts written in different styles of operational semantics correspond when
they define the same reduction strategy: they contract redexes in identical order. The styles
may differ in the administrative steps, in the use of auxiliary administrative terms and
data structures, and in the level of definition (e.g. one-step versus multiple-step reduc-
tion). One way to prove the correspondence between artefacts is by inter-deriving their
implementations by means of program transformations. For example, an abstract machine
implementation can be derived from the implementation of a structural operational seman-
tics or from an evaluator implementation of a natural semantics. See Danvy (2009) for an
introduction.

The correspondence between semantic artefacts, and the inter-derivation of the imple-
mentations, can be exploited to prove properties of the reduction strategy using a semantic
artefact better suited to their proof. For instance, proof techniques like structural induction
may be more readily applicable in one artefact than in others. The idea of proving prop-
erties in a corresponding semantic artefact is not new. A seminal case in point is Plotkin
(1975) who, among other things, proved properties of the SECD abstract machine using a
corresponding big-step call-by-value evaluator defined in natural semantics.

1.1 Contribution

In this paper, we prove a property of the reduction strategy embodied by one semantic
artefact (a full-reducing abstract machine) by proving that property in a corresponding
semantic artefact (a structural operational semantics) where we can more readily deploy
structural induction. We elaborate the details in the following paragraphs. In Section 1.2
we explain the importance of the contribution.

The full-reducing abstract machine. The abstract machine is an improved version of
the original KN machine (Crégut, 2007, p. 217), which is the full-reducing variant of
the widely known call-by-name Krivine abstract machine (KAM) (Krivine, 2007). The
latter is the basis and inspiration for abstract machines of popular proof-assistants. The
original KN abstract machine takes as input a pure lambda calculus term without free
variables (i.e. a closed term) represented with de Bruijn indices. The machine reduces
the term fully to a normal form (i.e. a term with no redexes) if and only if such normal

https://doi.org/10.1017/S0956796819000017 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000017

The KN abstract machine simulates normal-order reduction in lockstep 3

form exists.1 The machine works with a term, an environment stack, a continuation
stack, and the current nesting level at which it is reducing under lambda. In the termi-
nology of Biernacka & Danvy (2007), KN is an environment-based, push/enter abstract
machine.

The improved version of KN was introduced in García-Pérez et al. (2013). It combines
the term with its environment to make up a closure and therefore works with a closure, a
continuation stack and the current nesting level. Due to small but essential modifications,
the improved version can work with open terms and requires less information to reduce
applications that do not reduce to a redex. These modifications do not affect the reduction
strategy: every closed term reducible by original KN is reduced in a similar fashion by
improved KN.

We provide a tutorial presentation of both versions of the machine (Section 4).
Understanding them properly is essential for understanding the calculus of closures and,
consequently, the proof presented in this paper. We also hope to contribute to the popular-
isation of the original KN machine, which is not as widely known or cited as it deserves.
It fully reduces pure lambda-calculus terms with de Bruijn indices simply and effectively.
Our improved version is certainly less known.

The structural operational semantics of a calculus of closures. The corresponding
semantic artefact is a structural operational semantics that defines the one-step reduction
relation of the λρ̃ calculus of closures. This calculus was designed in García-Pérez et al.
(2013) with KN in mind and its reduction relation is purposely defined to be a reduction
strategy. The proof of the correspondence consists of a program derivation that starts with
an implementation of the structural operational semantics and ends with an implementation
of the improved version of KN.

The proof of lockstep simulation. The property we prove in this paper is that λρ̃ ’s reduc-
tion (and KN by the correspondence) simulates in lockstep the normal-order strategy of the
pure lambda calculus, hereafter pure normal-order.

The pure normal-order strategy reduces pure lambda calculus terms by contracting the
leftmost redex first, understanding ‘leftmost’ as in Curry & Feys (1958) or as ‘leftmost-
outermost’ by looking at the redex’s position in the abstract syntax tree of the term. Pure
normal-order satisfies two important properties: (1) it is a complete reduction strategy,
i.e. finds the normal form of a pure term if and only if such normal form exists; (2) it is a
standard strategy, i.e. it doesn’t reduce a redex to the left of the one just contracted.2

Lockstep simulation states that for every pure term M , each step in its normal-order
reduction sequence (each involves β-contraction) corresponds, modulo administrative

1 Some authors use strong reduction rather than full reduction, but the former can be confused with strong
normalisation which means something different, namely, that reduction terminates for every term. Also, strong
reduction seems the antonym of weak reduction, but the latter just refers to ‘not reducing abstraction bodies’.
For these reasons we use ‘full-reduction’ throughout the paper, with a dash to make it a technical name.

2 Some authors use normal-order for the weaker strategy that reduces to weak head normal form. We follow
Plotkin (1975); Sestoft (2002) and Ronchi Della Rocca & Paolini (2004) who refer to the latter weaker strategy
as call-by-name. Note that call-by-name’s definition in a pure calculus (Sestoft, 2002; Ronchi Della Rocca &
Paolini, 2004) differs from its definition in a calculus with primitives (Plotkin, 1975).

https://doi.org/10.1017/S0956796819000017 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000017

4 Á. García-Pérez and P. Nogueira

steps, with one and only one step in the λρ̃ reduction sequence starting at the closure
M[ε] where [ε] is the empty environment. There is a one-to-one correspondence between
the pure normal-order step and a segment of the λρ̃ reduction sequence that comprises
one step involving βρ̃-contraction (let us call it a ‘non-administrative’ step) plus zero or
more administrative steps around the non-administrative step. The terms before and after
contraction in the pure normal-order reduction step respectively correspond, via a substitu-
tion function σ from closures to terms, with the closures before and after the λρ̃ reduction
segment. Thus, the redexes contracted by both steps are ‘the same’. Function σ forces the
delayed substitutions, effectively simulating capture-avoiding substitution. For illustration,
see the diagram on page 30.

Since pure normal-order and λρ̃ ’s reduction are strategies, there is only one respec-
tive reduction sequence for M and for M[ε] in which pure normal-order steps and λρ̃

non-administrative steps correspond one-to-one in the way we have described. Since KN
reduction and λρ̃ reduction correspond, KN also simulates pure normal-order in lockstep.

Simulation versus correspondence. We call it lockstep simulation because it is a corre-
spondence between a reduction strategy of a calculus of closures and a reduction strategy of
a calculus of pure terms. Thus, a mediating substitution function σ from closures to terms
is required to prove the correspondence. It cannot be proven directly by program transfor-
mation, for it is not a correspondence in the sense used above for semantic artefacts that
embody the same reduction strategy of the same underlying calculus.

Our use of ‘simulation’ comes from the presence of σ and must not be confused with
the notion of simulation or bisimulation in labelled transition systems (Keller, 1976). A
bisimulation in the latter sense between terms of the pure lambda calculus and closures
of λρ̃ might be given by quotienting the set of closures with the equivalence relation
induced by administrative reduction. However, we follow a direct approach and provide a
commutation theorem that states a one-to-one correspondence between the contraction of
redexes.

Simplicity of the proof. The lockstep simulation proof consists of straightforward struc-
tural inductions, thanks to the separation of terms and closures, and the separation in
reduction judgements between the point at which the de Bruijn level of a formal parameter
is pushed on the environment, and the point at which the current nesting level is incre-
mented. Because of this separation the current nesting level remains constant at both sides
of a reduction in a judgement, a property we call balanced derivations, which facilitates
the deployment of structural induction (Section 5).

Carrying out the proof directly on any version of KN is harder. Both versions consist
of first-order state transition rules, both use continuation stacks, and the original version
separates terms and environments and does not decrement the current nesting level when
scoping out of a lambda (Section 4).

As an overview, we list the proof’s main definitions and lemmata:

• A well-formedness definition for closures with environments (Definition 6.1).
• A lemma stating that well-formedness is invariant under reduction (Lemma 6.1).
• A definition of the substitution function σ from closures to pure terms

(Definition 6.2).

https://doi.org/10.1017/S0956796819000017 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000017

The KN abstract machine simulates normal-order reduction in lockstep 5

• A couple of structural induction principles on closures (Definitions 6.3 and 6.4).
• A lemma stating that de-Bruijn-index shifting is invariant under σ (Lemma 6.4).
• Lemmata connecting σ with meta-level substitution (Lemmas 6.6 and 6.7).
• Lemmata showing that if σ sends a closure to a term in normal form, then adminis-

trative reduction reduces that closure to a closure in normal form (Lemmas 6.10 and
6.11).

• A lemma stating that administrative reduction finds the next redex (Lemma 6.12).
• A commutation theorem stating that normal-order (both λρ̃ and pure) commute

with σ (Theorem 6.13).
• Lockstep simulation as Corollary 6.14 of Theorem 6.13.

1.2 Importance of the contribution

Importance of full-reduction. The importance of full reduction is widely recognised
in the theory and implementation of higher-order programming languages and proof-
assistants, optimisation by partial evaluation and automated reasoning. See for example
Grégoire & Leroy (2002); Crégut (2007); Aydemir et al. (2008); Charguéraud (2012);
Scherer & Rémy (2015); Accattoli et al. (2015). However, full-reducing abstract machines
and their properties have surprisingly received less attention. For instance, it is not
full-reducing KN but weak-reducing KAM that is often mentioned in the literature in con-
nection with abstract machines of proof-assistants that perform full reduction. For a list
of the scant related work on full-reducing abstract machines, see for example Accattoli
et al. (2015, pp. 4–5).

Stronger correctness property. The property that original KN is complete for closed
terms is a known result proven schematically in Crégut (2007, Theorem 6). A closed term
has a normal form if and only if the KN machine reduces the term to the normal form. But,
this provides no information about how KN finds the normal form. Pure normal order finds
the normal form of a term in standard fashion. KN could be realising one of the several
complete but non-standard strategies of the pure lambda calculus, namely the spine strategy
‘hybrid normal order’ (Sestoft, 2002, p. 430) or the eval-readback strategy headNF-byName
(Paulson, 1996, p. 390).

Lockstep simulation shows that λρ̃ and improved KN realise pure normal-order and
are thus complete and standard for all terms. If the pure term has a normal form, then its
corresponding closure also has a closure normal form, with the former obtained from the
latter via σ .

A different property we find in Crégut (2007, Theorem 4) is that given a KN transition
between two states, the interpretations of the states in the λσ calculus of explicit sub-
stitutions (Abadi et al., 1991) are λσ -convertible. However, there are simply typed terms
whose reduction in λσ does not terminate. Therefore, λσ’s reductions are not strictly bound
to pure lambda calculus reductions (Melliès, 1995, p. 329).

A proof of lockstep simulation between a call-by-name strategy of λσ and call-by-
name in the pure lambda calculus is given in Abadi et al. (1991, Theorem 3.9). The proof
employs a substitution function that maps λσ -terms to λσ -normal-forms (Abadi et al.,
1991, Section 3.1). For a detailed comparison with calculi of explicit substitutions, see
Section 7.

https://doi.org/10.1017/S0956796819000017 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000017

6 Á. García-Pérez and P. Nogueira

Contribution to the concrete framework for abstract machines. One outcome of
the research on inter-derivation by program transformation of semantic artefacts is a
framework for environment-based call-by-name/value abstract machines (Curien, 1991;
Biernacka & Danvy, 2007). The call-by-name KAM and the call-by-value Categorical
Abstract Machine correspond with reduction strategies of the λρ calculus of closures
(Curien, 1991). This calculus is superseded by the λρ̂ calculus (Biernacka & Danvy, 2007)
which amends λρ in order to specify proper structural operational semantics and derive by
program transformation the call-by-name/value abstract machines KAM, CEK and Zinc.

All these abstract machines and reduction strategies are weak-reducing. A substitu-
tion function from λρ̂-terms to pure terms is introduced in Biernacka & Danvy (2007,
p. 6:9), but no proof of lockstep simulation of call-by-name/value between λρ̂ and the pure
lambda calculus is given. The present paper contributes to the framework for environ-
ment machines a full-reducing calculus, a full-reducing machine and a proof of lockstep
simulation via a substitution function.

Vindication of λρ̃ as a calculus of closures for full-reduction. The addition of lockstep
simulation on top of the correspondence with KN vindicates λρ̃ as a calculus of closures for
complete and standard full-reduction with a corresponding well-known abstract machine.
The simplicity of the lockstep simulation proof by mere structural induction vindicates
several key features of λρ̃, namely index-alignment, parameters-as-levels and balanced
derivations. The first two are borrowed from KN and are explained in Sections 2 and 4.
The last one is explained in Section 5. Thanks to these features, λρ̃ reduces terms fully
without α-conversion, lexical adjustments at binding lookup, or recursive traversals of the
term to adjust indices, as is the case in other calculi and machines (Section 7). KN shows
that terms can be reduced fully and effectively with a judicious combination of de Bruijn
indices and de Bruijn levels. In λρ̃ it has its fitting corresponding calculus.

Lockstep simulation proof between improved KN and a substitution-based version of
KN. In García-Pérez & Nogueira (2014, Figure 9) we present a full-reducing substitution-
based eval/apply abstract machine that works with open pure terms. The machine uses
plain capture-avoiding substitution and carries no environment. What is of interest here is
that the derivation starts from a structural operational semantics of pure normal-order, but
one written in the so-called ‘hybrid style’. We state in that paper that the derived machine
is a substitution-based open-(and pure)-terms version of KN. Lockstep simulation proves
that statement. The substitution-based machine and pure normal-order correspond by the
program transformation shown in that paper. Environment-based improved KN simulates
in lockstep pure normal-order as shown in this paper. Therefore, the substitution-based
machine and the environment-based improved KN simulate each other in lockstep.

1.3 Structure and prerequisites of the paper

Section 2 Introduces the notion of current nesting level and the convention on
de Bruijn indices and levels required to understand the index alignment
and parameters-as-levels features of KN and λρ̃. Unfortunately, de Bruijn
indices and levels are usually taken for granted, but there are several design
choices, and the one chosen by KN illuminates the machine’s rationale.

Section 3 Reintroduces the structural operational semantics of pure normal-order.

https://doi.org/10.1017/S0956796819000017 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000017

The KN abstract machine simulates normal-order reduction in lockstep 7

Section 4 Provides a tutorial presentation of original and improved KN. A proper
understanding of the machines is a prerequisite for understanding the λρ̃

calculus and, consequently, the proof of lockstep simulation.
Section 5 Reintroduces λρ̃.
Section 5.1 Discusses the correspondence between improved KN and λρ̃.
Section 6 Presents the proof of lockstep simulation.
Section 7 Discusses related work, in particular other derivations of full-reducing

machines, calculi with lexical adjustments, calculi of explicit substitutions
and locally nameless representations of terms.

The original and improved versions of KN, the λρ̃ calculus, the structural operational
semantics of pure normal-order and the proof of correspondence by program transforma-
tion between improved KN and λρ̃ were introduced in García-Pérez et al. (2013). In this
paper, we provide a much better and clearer tutorial presentation of the machines and the
calculus. We do not discuss the details of the proof of correspondence. We are mainly
concerned with proving lockstep simulation.

We assume readers are familiar with lambda calculus concepts and notation as found in
the standard reference (Barendregt, 1984), namely syntax of lambda terms, meta-linguistic
conventions (lowercase letters range over variables, uppercase letters range over terms,
etc.), application associates to the left and has higher precedence than abstraction, bound
and free variables, identity of terms up to α-conversion (hereafter written ≡), capture-
avoiding substitution, redexes, normal forms, reduction relations −→β and −→∗

β , and
reduction strategies as partial functions on terms. A reduction strategy can be defined as a
one-step (small-step) or as a final-step (big-step) partial function. The latter corresponds to
iterations (compositions) of the former until an irreducible term is reached.

Unlike Barendregt (1984), we use Extended Backus-Naur Form (EBNF) grammars to
define sets. For a variable x and terms N and B, we write the capture-avoiding substitution
function as [N/x]B. This notation flows in English when read from left to right: ‘substitute
N for free x in B’ and embodies ‘substitute-for’ rather than ‘replace-by’. It is also the
original notation in Curry & Feys (1958).

2 Current nesting level, de Bruijn indices and de Bruijn levels

For precision we distinguish the binding occurrence of a bound variable (the occurrence
between the λ and the dot in an abstraction) from the applied occurrence of a bound
variable (an occurrence in the abstraction’s body that is not a binding occurrence). Free
variables have no binding occurrence. For example, parsing λx.(λy.xz)y from left to right,
there is a binding occurrence of x, a binding occurrence of y, an applied occurrence of x, a
free variable z and a free variable y.

In a nameless representation of terms there are no binding occurrences, and applied
occurrences refer unambiguously to their binding lambda. Two nameless representations
are de Bruijn indices and de Bruijn levels (de Bruijn, 1972). Applied occurrences are
represented by natural numbers. The set of terms becomes � ::= n | λ.� | � �, where
we overload n ∈N in the grammar as non-terminal for N. The following picture helps to
explain how the numbers are determined.

https://doi.org/10.1017/S0956796819000017 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000017

8 Á. García-Pérez and P. Nogueira

Fig. 1. (Left) Environment size, index function ind, level function lev and encoding function ϕ.
(Right) Capture-avoiding substitution and shift functions for terms with de Bruijn indices.

λy. . . . λx. . . . λz. (. . . x . . .)

lev(x, ρ)

ind(x, ρ)

|ρ|

The picture shows a term with several lambdas. The term in parenthesis has no lambdas
and has an applied occurrence of x. An environment stack of binding occurrences ρ can be
constructed by traversing the term from the root, down the syntax tree, to the last lambda.
More precisely, let ρ ::= ε | x : ρ be the set of environment stacks constructed by ε (empty
stack) and by x : ρ (push the binding occurrence x on top of the stack ρ). The value of ρ

in the picture is z : . . . : x : . . . : y : ε. We write |ρ| for the size of ρ, calculated as shown on
the left-hand side of Figure 1.

At the point of an applied occurrence, the current nesting level, or number of lambdas
gone under, is the size of the environment stack at that point. The nesting level 0 (empty
environment stack) is for the scope with no lambdas.

In a de-Bruijn-indices representation, the applied occurrence of x is represented by a
natural number that counts the number of nesting lambdas from the lambda closest to the
applied occurrence of x, up the syntax tree, to the lambda binding x. Older presentations
start counting at 1, including (de Bruijn, 1972), but these days counting starts at 0. At
the applied occurrence of x, its de Bruijn index is calculated by ind(x, ρ) which delivers
the position of the first occurrence of x on the environment stack, with 0 the index of the
top of the stack. The position from the top in the environment stack is what index means
in de Bruijn (1972, p. 392), with no other mention of it in that paper.3 The definition of
function ind is shown on the left-hand side of Figure 1. For example, λx.(λy.x y)x and all
its α-convertible terms are uniquely represented using de Bruijn indices by λ.(λ.1 0)0.

In the alternative de-Bruijn-levels representation, the applied occurrence of x is repre-
sented by the number of nested lambdas from the root of the term, down the syntax tree,
to the lambda binding x. Like Crégut (2007), we begin counting at 1, leaving 0 for the
scope with no lambdas, as with the current nesting level. At the applied occurrence of x,
its de Bruijn level is calculated by lev(x, ρ) which pops the environment stack until it finds
x at the top and then returns the size of the remaining environment. This is the size of the
environment constructed from the root to the binding occurrence of x, or equivalently, the

3 The equivalent number of inside-out nesting lambdas that we are using for intuition is not called index but
reference depth in de Bruijn (1972, p. 383).

https://doi.org/10.1017/S0956796819000017 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000017

The KN abstract machine simulates normal-order reduction in lockstep 9

value of the current nesting level at the point of the binding occurrence. Thus, when going
under lambda, the de Bruijn level for the applied occurrence is one plus the current nest-
ing level. The definition of lev is shown in Figure 1. For example, λx.(λy.x y)x and all its
α-convertible terms are uniquely represented using de Bruijn levels by λ.(λ.1 2)1.

With de Bruijn indices, free variables are represented by out-of-bounds indices point-
ing to imaginary binding lambdas. Their value is fixed by convention. In other words,
the representation is parametric on an initial environment for free variables. For example,
(λx.y)z can be uniquely represented by (λ.1)1 with initial environment y : z : ε such that
ind(y, x : y : z : ε) = 1 and ind(z, y : z : ε) = 1. It can also be uniquely represented by (λ.2)0
with initial environment z : y : ε such that ind(y, x : z : y : ε) = 2 and ind(z, z : y : ε) = 0. We
omit the representation of free variables with de Bruijn levels because they are used only
for bound variables by KN and λρ̃.

Given a lambda term T and an initial environment ρ0 such that x ∈ FV(T) if and only if
x ∈ ρ0, the expression ϕ(ind, T , ρ0) delivers the de-Bruijn-indices representation of T , and
ϕ(lev, T , ρ0) delivers the de-Bruijn-levels representation of T . The definition of ϕ is shown
in Figure 1. Observe that the environment only increases when going under lambda, and
that it is distributed in applications such that the operator and the operand are at the same
nesting level.

It is important to notice that, with de Bruijn indices, the environment stack increases
when ϕ goes under lambda, so different applied occurrences of the same variable are rep-
resented by different indices depending on the nesting level. For example, x in λx.(λy.x y)x
is both 1 and 0 in λ.(λ.1 0)0. For this reason, the capture-avoiding substitution function
[T/n]M (Figure 1 top right) for this nameless representation has to shift the free variables
of T when substituting T , and increment the index of the substituted variable as it goes
under lambda. The shift function ↑n

k (Figure 1 bottom right) carries a cutoff parameter k
informing of the number of lambdas gone under.

In contrast, different applied occurrences of the same variable are represented by the
same de Bruijn level, because the size of the environment at which the variable is at the
top is the same, or equivalently, because the current nesting level at the point of the binding
occurrence is the same. For example, x in λx.(λy.x y)x is 1 in λ.(λ.1 2)1.

It is a simple exercise to prove by induction that for every binding occurrence x ∈ ρ,
then lev(x, ρ) + ind(x, ρ) = |ρ|. Thus, the de Bruijn index of an applied occurrence can
be calculated from its de Bruijn level by subtracting the latter from the current nesting
level. That is, ind(x, ρ) = |ρ| − lev(x, ρ). That different applied occurrences have the same
de Bruijn level, and that de Bruijn indices can be calculated by subtracting from the current
nesting level the de Bruijn level for the variable is what motivates KN’s and λρ̃ ’s index
alignment and parameters-as-levels properties discussed in Sections 4 and 5.

3 Pure normal-order

Pure normal-order is the standard and complete reduction strategy of the pure lambda cal-
culus that reduces terms to normal form. When the strategy finds a leftmost redex (λ.B)N it
contracts that redex and not the redexes in B. To allow for this, pure normal-order reduces
operators in applications weakly to weak head normal form.4 The set WHNF of weak

4 There is no redundancy in the sentence. Weak reduction means ‘not reducing abstractions’, which by itself
does not deliver weak head normal forms as results.

https://doi.org/10.1017/S0956796819000017 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000017

10 Á. García-Pérez and P. Nogueira

Fig. 2. Structural operational semantics of pure normal-order. The sets of terms involved are defined
at the top of the figure.

head normal forms and the set NF of normal forms are defined in Extended Backus-Naur
Form at the top of Figure 2. Weak head normal forms consist of arbitrary abstractions and
terms of the form n, n �, n � �, etc., which according to convention associate as n, (n �),
((n �) �), etc. These are the so-called neutral terms (neutrals, for short) because they are
variables or applications that cannot reduce to a redex. Normal forms are terms without
redexes, that is, abstractions and neutrals in normal form. The reduction of abstractions
and neutrals to normal form is what characterises full reduction.

Figure 2 shows a structural operational semantics that defines pure normal-order as a
one-step partial function. Alternative definitions can be given for this strategy, e.g. Pierce
(2002). There is no rule for indices because they are normal forms. There are four rules for
applications: redex contraction (β), and compatibility rules (μ1), (μ2), and (ν) to locate
the redex within an arbitrary term.

Rule (μ1) applies when the redex is in the operator M which is not in WHNF. (The
last antecedent in this and other rules indicate that contraction takes place if a redex is
found.) Rule (μ2) applies when the redex is in the operator which is in WHNF but is
not an abstraction. If the operator is in WHNF and is an abstraction, then (β) would be
applicable. Rule (ν) applies when the redex is in the operand N and the operator M is
already in NF but is not an abstraction, meaning M N is a neutral with M already in NF.
Although NF ⊂ WHNF, rules (μ2) and (ν) do not overlap because the third antecedent of
(μ2) is not the case when M ∈ NF. There is a last compatibility rule for abstractions (ξ)
which applies when the redex is under lambda. It is the presence of rule (ξ) for reducing
abstractions, and of rules (μ2) and (ν) for reducing neutrals, that distinguishes pure normal-
order from the weaker pure call-by-name. The splitting into two rules (μ1) and (μ2) in this
presentation is to make explicit the dependency of pure normal-order on pure call-by-name
(García-Pérez & Nogueira, 2014).

The following example illustrates pure normal-order reduction, where the redex con-
tracted at each step is underlined.

Example 3.1 (Pure normal-order reduction of a closed term with two redexes)

λx.x((λy.y)((λt.t)x)
�����������

) −→no λx.x((λt.t)x
�����

) −→no λx.x x

https://doi.org/10.1017/S0956796819000017 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000017

The KN abstract machine simulates normal-order reduction in lockstep 11

Fig. 3. A version of KN that works with closures with closed terms (García-Pérez et al., 2013, p. 89).

4 The KN machine and its improved open-terms version

The original KN machine (Crégut, 2007, p. 217) consists of first-order transition rules that
operate on a quadruple consisting of a term, an environment stack, a continuation stack
and the current nesting level. By attaching the term to its environment stack to make up
a closure we have an equivalent version of the machine, shown in Figure 3, that operates
on a closure C, a continuation stack S and the current nesting level �. The syntax of terms,
closures and both stacks is defined at the top of the figure.

We start with the syntax of closures. The first case �[ρ] are proper closures, i.e. terms
attached to environments ρ that stack up operand closures.5 Following convention, we
elide ‘: ε’ in non-empty environments and write M[N[ρ]] instead of M[N[ρ] : ε]. If ρ is
empty, then we write M[N[ε]]. Proper closures are standard in closure calculi and should
be relatively clear.

The remaining two cases are uncommon. The second case n are de Bruijn levels of for-
mal parameters (of binding occurrences). The over-line is to distinguish them notationally
from de Bruijn indices n. The last case 	�, �
 are result terms (which thus carry no envi-
ronment) embedded with a nesting level. We explain these constructs below along with
the rules of Figure 3.

We briefly describe the stack S. It can be empty (same symbol as empty environment) or
has at its top one of the following: an operand closure �[ρ], the control character λ which
indicates that the machine is currently reducing under lambda, or a result term embedded
with a level 	�, �
.

In rule (1), the machine takes an input closed term T and constructs an initial triple
consisting of a proper closure (T with empty environment), an empty continuation stack
and the initial nesting level.

Rules (2)–(5) explain the choice of de Bruijn indices for terms. In Rules (2) and (3),
the machine reduces proper closures of the form n[ρ] by looking up the nth binding on
the environment ρ. The de Bruijn index n acts as a lexical offset. Recall from Section 2
that, with de Bruijn indices, 0 points to the closest lambda, so 0 is the index of the top of

5 Do not confuse with the environments of Section 2 that stack up binding occurrences.

https://doi.org/10.1017/S0956796819000017 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000017

12 Á. García-Pérez and P. Nogueira

the environment stack. The end’s index is |ρ| − 1. Terms are closed and thus n < |ρ|. In
rule (4), the machine reduces applications (MN)[ρ] by distributing the environment over
term application and pushing the operand closure on the continuation stack. In rule (5),
the machine reduces a redex: the operator is an abstraction closure and there is an operand
closure at the top of the continuation stack. The operand closure is moved from the top
of the continuation stack to the top of the environment stack. A now-free occurrence of 0
within B (which points to the lambda of λ.B) is the index for the N[ρ ′] operand in ρ. The
environments ρ and ρ ′ could be different because the abstraction closure (λ.B)[ρ] may
come from reducing an operator M[ρ] on the right-hand side of rule (4).6

For example, from an initial triple (((λ.(λ.B)M)N)[ε], ε, 0) the machine eventually
arrives at the triple (B[M[N[ε]] : N[ε]], ε, 0) such that the now-free occurrences of 0 and
1 in B respectively point to M[N[ε]] and N[ε].

Rules (6) and (7) explain how KN reduces under lambda. In rule (6), there is an abstrac-
tion closure to reduce, with no operand closure at the top of the continuation stack. (This
rule applies when rule (5) fails to match.) The machine has to go under lambda and reduce
the abstraction’s body. Suppose it simply pushed the environment down the body: λ.B[ρ].
Within B’s scope the occurrences of 0 that refer to that very binding λ are non-free and
must not serve as lexical offsets to the environment. Any proper closure of the form 0[ρ ′]
eventually constructed in later triples for those non-free occurrences must be reduced to 0
by discarding the environment. And similarly with other non-free occurrences when going
deeper under lambda inside B. One way to deal with such indices is lexical adjustment, i.e.
to use some extra lexical offset parameter to adjust indices when retrieving bindings from
the environment in rules (2) and (3). However, KN does something simpler. In rule (6), it
removes the λ from the abstraction and pushes the de Bruijn level of the abstraction’s for-
mal parameter on the environment. As explained in Section 2, the value of this de Bruijn
level is easily calculated as � + 1, which explains why KN carries �. In the same rule (6),
the machine also pushes a λ symbol on the continuation stack, and increments the current
nesting level to mark that it is reducing under lambda. Given a proper closure of the form
n[ρ ′] eventually constructed for a non-free occurrence of a de Bruijn index n that points to
a lambda on the continuation stack, the index also points to its de Bruijn level on the envi-
ronment stack. In other words, the index deserves its name because it points to a binding
on the environment stack (Section 2).

The following picture illustrates this for an abstraction with m + n lambdas. The term in
parenthesis has no lambdas and has an occurrence of the de Bruijn index n, which is bound
by the nth lambda to the left. When the machine goes under m + n lambdas, then n points
to the nth binding on the environment, namely m. Compare with the picture in Section 2.

λ. . . . λ. . . . λ. (. . . n . . .) � = 0

m

n

(. . . n . . .)[m + n : . . . : m : . . . : 1] � = m + n
n

6 Rule (5) could be written with (λ.B)[ρ′] and N[ρ] to indicate that the abstraction closure’s environment is what
may change. But, then many more visually less pleasant ρ′ symbols would have to be consistently written in
other rules.

https://doi.org/10.1017/S0956796819000017 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000017

The KN abstract machine simulates normal-order reduction in lockstep 13

As explained in Section 2, the looked-up de Bruijn level m can be easily converted to the
de Bruijn index by subtracting m from the current nesting level �, that is, (m + n) − m = n.

The current nesting level is only incremented when going under lambda in rule (6) and
remains unaffected when reducing redexes in rule (5). Compare the following picture to
the one above.

λ. . . . λ.(λ. . . . λ. n)M � = 0

m

n

((λ. . . . λ.n)M)[m : . . . : 1] � = m
n

(λ. . . . λ.n)[M[m : . . . : 1] : m : . . . : 1] � = m
n − 1

n[m + n − 1 : . . . : m + 1 : M[m : . . . : 1] : m : . . . : 1] � = m + n − 1

M[m : . . . : 1] � = m + n − 1

In the third row, the operand closure is pushed on the environment but the current nesting
level remains m. In the last row, the binding for n is looked up on the environment. The
current nesting level remains m + n − 1.

We are in a position to explain the two main properties that characterise the KN machine:

Index alignment: All de Bruijn indices deserve their name because they point to a binding
on the environment.
Parameters-as-levels: The binding for a non-free de Bruijn index is its corresponding
de Bruijn level. The latter is pushed on the environment and its value is simply � + 1.
When a de Bruijn level is looked up on the environment stack, the original de Bruijn
index can be calculated back using the formula ‘current-nesting-level minus (looked-up)
de-Bruijn-level equals (non-free) de-Bruijn-index’.

The computed de Bruijn index cannot be left as is (it is a term, not a closure), nor can it be
returned in a proper closure with an empty environment (n < |ρ| must hold). A result term
	� − n, �
 is constructed in rule (7). The embedding with the current nesting level is due
to the peculiar way in which original KN reduces neutrals.

Recall from Section 3 that neutrals are applications of the form n N1 · · · Nk with a head
variable (de Bruijn index) n and with k > 0 operands. All the operands have to be reduced
at the same nesting level as the head variable. However, KN increments the current nest-
ing level when it goes under lambda in rule (6), but does not decrement the level when
scoping out of it in rule (9). Suppose KN goes under lambda and increments the current
nesting level when reducing operand Ni. That value is invalid for operands Ni+1, . . . , Nk .
By embedding result terms with their nesting level, the appropriate value can be recovered
from the embedded result term at the top of the continuation stack, which is the result of
reducing the previous term (head variable or previous operand).

In rule (8), the machine moves an embedded result term to the continuation stack and
continues reducing the next operand, resetting the current nesting level to that of the
embedded result term. In rule (9), it scopes out of lambda and builds the embedded result

https://doi.org/10.1017/S0956796819000017 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000017

14 Á. García-Pérez and P. Nogueira

Fig. 4. Partial reduction trace of original KN for the term λ.0(λ.M)N which has a neutral as body.
Assume no abstraction occurs in M and that it reduces to M ′.

abstraction. In rule (10), it pops out of the continuation stack the embedded result opera-
tor and constructs the embedded result application with the nesting level taken from the
embedded result operator. The rules (8) and (10) are thus involved in resetting the current
nesting level. The former when there is an operand closure that needs to be reduced on top
of the continuation stack, and the latter when a neutral application result is constructed.

The last rule (11) ends the execution when the control stack is empty.
For illustration, consider the input term λ.0(λ.M)N which has a neutral as body. Figure 4

shows its partial reduction trace. Assume that the reduction of M does not go under lambda
(the current nesting level is not incremented) and that the result of that reduction is M ′. The
rule applied at each step is shown on the left of the arrow. Observe in the application of
rule (10) that the current nesting level is reset to that of the embedded result term on top of
the continuation stack.

Figure 5 shows a complete reduction trace. Compare it to the pure normal-order
reduction of the same input term in Example 3.1.

4.1 Improved open-terms KN

A slightly improved open-terms version of KN is easily obtained by letting de Bruijn
indices point out of bounds, and by decrementing the current nesting level when scoping
out of lambda, so that the result terms need not be embedded with the current nesting level.
The rules are shown in Figure 6.

The difference with Figure 3 is the addition of rule (A) for out-of-bounds indices, the
decrementing of the current nesting level in rule (9) when scoping out of lambda, and the
absence of the current nesting level in result terms in rules (7), (8) and (9). All these rules
are highlighted in the figure for comparison with Figure 3.

In a proper closure n[ρ] the de Bruijn index n now acts as a lexical offset that points to
its closure binding in the environment when n < |ρ|, or points out of bounds when n ≥ |ρ|,

https://doi.org/10.1017/S0956796819000017 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000017

The KN abstract machine simulates normal-order reduction in lockstep 15

Fig. 5. Complete reduction trace of the original KN for the term λ.0((λ.0)((λ.0)0)) that encodes
λx.x((λy.y)((λt.t)x)).

Fig. 6. An improved version of KN that works with closures with open terms (García-Pérez et al.,
2013, p. 95).

Fig. 7. Rules (2), (3) and (A) in Figure 6 can be replaced for uniformity by these two rules.

meaning the index is for a free variable. In this case the size of the environment is 0 and
the de Bruijn index is calculated by adding the current nesting level to n.

For uniformity, rules (2), (3) and (A) in Figure 6 can be replaced by the two rules
in Figure 7. The expression nth(ρ) denotes the nth closure in ρ with 0th(ρ) the closure
at the top. When n ≥ |ρ| the result index is calculated by subtracting from n the size
of the environment without the formal parameters in it, that is, |ρ| − �. This number
equals the number of operands in the environment, that is, the number of binding occur-
rences removed by reducing redexes in rule (5), which is the amount by which the index
n must be decremented to be correct in the absence of an environment in the current
scope.

https://doi.org/10.1017/S0956796819000017 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000017

16 Á. García-Pérez and P. Nogueira

Fig. 8. Partial reduction trace of improved KN for the term λ.0(λ.M)N . The differences with
Figure 4 are highlighted.

Fig. 9. Complete reduction trace of improved KN for the term λ.0((λ.0)((λ.0)0)) that encodes
λx.x((λy.y)((λt.t)x)).

Figure 8 shows the partial reduction trace of the term λ.0(λ.M)N by improved KN. The
differences with Figure 4 are highlighted. In particular, the current nesting level is decre-
mented in the application of rule (9) and therefore result terms need not carry their nesting
level. Figure 9 shows a complete reduction trace. Compare it to the reduction of the same
term in Figure 5 by the original version of the machine.

5 The λρ̃ calculus of closures for full reduction

The λρ̃ calculus does not require a continuation stack and carries the current nesting level
with the reduction relation. The calculus consists of closures and a one-step reduction
relation on closures that is a reduction strategy (a partial function). As usual, multiple-step
reduction is the iteration of one-step reduction. The relation/strategy reduces a closure in

https://doi.org/10.1017/S0956796819000017 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000017

The KN abstract machine simulates normal-order reduction in lockstep 17

Fig. 10. Syntax and structural operational semantics of λρ̃. The M, N and B letters stand for elements
of the set of closures C. The current nesting level � is a natural number.

leftmost fashion to its closure normal form if and only if such closure normal form exists.
Hence, hereafter we refer to the reduction relation/strategy as λρ̃-normal-order. The proof
of lockstep simulation (Section 6) warrants this name.

Figure 10 shows the syntax of closures and of other closure subterms at the top, and
the structural operational semantics of the reduction relation/strategy at the bottom. In the
figure and hereafter, sans-serif letters M, N, B, etc. stand for elements of the set of closures.
The current nesting level � is a natural number.

We start with the syntax of closures. The first two cases are proper closures and de Bruijn
levels. The remaining three constructors are result indices 	n
, closure abstractions ���.C
and closure applications C · C. These constructors are required for full-reduction. They are
called ephemerals in García-Pérez et al. (2013) because they are eliminated by the shortcut
optimisation of the evaluator implementing the natural semantics of the relation/strategy.
This is of no concern here, but we keep the name for consistency.

Considered in isolation, the set of ephemerals E is isomorphic to �, with the prece-
dence and association convention of �’s term application and abstraction extended to E’s
closure application and abstraction. We write M ∼= M to indicate that an ephemeral M
is isomorphic to the pure term M , where ∼= is the equivalence relation extension of this
definition:

	n
 ∼= n

M ∼= M

���.M ∼= λ.M

M ∼= M N ∼= N

M · N ∼= M N

For example, ���.	0
 · (���.	1
) · 	0
 ∼= λ.0(λ.1)0.
Let us explain the rationale of each ephemeral. The λρ calculus of Curien has only

proper closures and a reduction relation such that, as noted in Biernacka & Danvy (2007),
one-step reduction (and structural operational semantics) cannot be expressed. The λρ̂

https://doi.org/10.1017/S0956796819000017 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000017

18 Á. García-Pérez and P. Nogueira

calculus of Biernacka & Danvy (2007) minimally extends λρ with closure applications and
an ephemeral expansion rule (M N)[ρ] −→ M[ρ] · N[ρ] that distributes the environment
by constructing a closure application. Redexes are reduced by pushing the operand closure
on the abstraction body’s environment: (λ.B)[ρ ′] · N[ρ] −→ B[N[ρ] : ρ ′]. One-step reduc-
tion can be defined in λρ̂ but only for weak-reduction as it has no provision for (ξ), (μ2)
and (ν).

The λρ̃ calculus adds the required constructors and rules for the full reduction of open
terms. A result index 	n
 is either the result of reducing a closure n[ρ] with n ≥ |ρ|, or of
reducing a de Bruijn level n delivering 	� − n
. Closure abstractions ���.C are required to
push the environment under lambda to reduce abstraction bodies.

The set of closure weak head normal forms WHNFC and the set of closure normal
forms NFC are obtained by adapting their respective homonymous definitions in the pure
lambda calculus (Figure 2). Neutral closures have the form 	n
 { · C}∗, and neutral closures
in closure normal form have the form 	n
 { · NFC}∗.

Let us move to the structural operational semantics. The rules of the first three rows
are notions of reduction (Barendregt, 1984) for the closure constructors. The rules of the
last two rows are compatibility rules obtained by adapting the homonymous rules of pure
normal-order (Figure 2).

The structural operational semantics defines a labelled transition system (Keller, 1976)
where each transition is labelled by the current nesting level � of the scope at which the
reduction step (the transition) is taking place. The level is only increased by rule (ξ ρ̃) of
compatibility under closure abstraction. It is kept constant by the other rules. Consequently,
the level increases in a derivation tree, not in a reduction sequence, and is therefore an
annotation, not a side-effect as is the case with labels in labelled transition systems of
process algebra.7

We now explain the reduction rules in detail. In the first row we have the ephemeral
expansion rules (APPρ̃) and (LAMρ̃). The former expands application closures to closure
applications as expected, and the latter expands abstraction closures to closure abstractions,
pushing the de Bruijn level of the formal parameter (one plus the current nesting level) on
the environment. In the second row, rule (βρ̃) contracts a redex (���.B[� + 1 : ρ]) · N[ρ].
The level that was pushed on the environment by an immediately preceding (LAMρ̃) is
discarded and replaced by the operand.

Thanks to the separation of closure-abstraction expansion (LAMρ̃) from contraction
(βρ̃) and from compatibility under lambda (ξ ρ̃), the current nesting level remains constant
at both sides of a reduction. As stated in the introduction, we call this property balanced
derivations. It facilitates proof by structural induction and allows us to annotate the level
in the transition.

Finally, rule (VARρ̃) is for in-bounds indices n, and rules (FREρ̃) and (PARρ̃) are
for result index calculations in the same vein as improved KN (Figure 6). In particular,
rule (FREρ̃) is for out-of-bounds indices n (free variables) and rule (PARρ̃) is for formal
parameters n.

Figure 11 shows a λρ̃ reduction for the term λx.x((λy.y)((λt.t)x)). Compare with its pure
normal-order reduction in Example 3.1 (page 10).

7 In García-Pérez et al. (2013, p. 91) judgements have the form 〈M, �〉 −→∼
no 〈M′, �〉 where the unchanging

current nesting level is paired with the closure rather than much better written under the arrow relation.

https://doi.org/10.1017/S0956796819000017 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000017

The KN abstract machine simulates normal-order reduction in lockstep 19

Fig. 11. Reduction example in λρ̃ for the term λ.0((λ.0)((λ.0)0)) encoding λx.x((λy.y)((λt.t)x)). The
expression being reduced at each step is underlined. On the right are shown the rules of the derivation
tree of the step, with the nesting level of each rule’s consequent and antecedent shown respectively
before and after the rule’s name.

5.1 On the correspondence between λρ̃ and KN

As shown in Section 4, the original and the improved versions of KN realise the same
reduction strategy for closed terms, i.e. reduce redexes in identical order. The improved
version, and therefore the reduction strategy, allows for open terms. The λρ̃ calculus also
realises that very reduction strategy. In other words, it corresponds with the improved KN
machine.

The proof of correspondence is by program transformation. Concretely, the derivation
starts from an implementation of the structural operational semantics of λρ̃ ’s reduc-
tion and arrives at an implementation of improved KN. Every step in the derivation is
semantics-preserving: it modifies the shape of the implementation and affects administra-
tive reduction, terms and structures, but the reduction strategy (reduction order of redexes)
is maintained. For details, see García-Pérez et al. (2013). The following theorem formally
states the correspondence.

Theorem 5.1 (Correspondence between λρ̃ and KN). Let T ∈ � be a term with de Bruijn
indices. If T has no normal form, then improved KN reduction and λρ̃ reduction diverge
on T. If T has normal form N, then the following hold:

https://doi.org/10.1017/S0956796819000017 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000017

20 Á. García-Pérez and P. Nogueira

(i) The improved KN reduces T to N.

(ii) T[ε]
0−→∗∼

no
N, with N ∈ E and N ∼= N.

(iii) Every redex reduced by KN’s rule (5) is reduced by λρ̃ ’s rule (βρ̃) in the same
order.

Proof By derivation by program transformation. �

For illustration, compare the λρ̃ reduction in Figure 11 with the reduction trace by
improved KN in Figure 9, as an example of the correspondence between the calculus and
the improved machine.

6 Proof of lockstep simulation

This section proves that
�−→∼

no simulates −→no in lockstep. Hereafter we respectively
refer to these strategies in text mode as ∼no and no. Lemma 6.1 states a well-formedness
invariant on the closures in a ∼no reduction sequence. Definition 6.2 introduces substitu-
tion function σ , and Lemma 6.3 formalises the interaction between ↑ and σ . Lemmas 6.5
and 6.7 show that σ simulates capture-avoiding substitution in the pure lambda calculus.

Definition 6.5 splits
�−→∼

no into sub-strategies
�−→ρ̃ and

�−→βρ̃ . The former implements
the administrative steps of ephemeral expansion, on-demand substitution and result index
calculation (akin to σ). The latter reduces the βρ̃-redexes analogous of the β-redexes

of the pure lambda calculus. Lemma 6.9 states that
�−→∗∼

no
is equivalent to the diagram-

matic relational composition of
�−→∗̃

ρ with
�−→βρ̃ . Lemmas 6.10 and 6.11 state that

λρ̃ administrative reduction is akin to substitution σ for closures that flatten to a nor-
mal form. Lemma 6.12 states that administrative reduction locates the next βρ̃-redex.
Theorem 6.13 states that normal-order (pure and λρ̃ ’s) commute with substitution, and
Corollary 6.14 states lockstep simulation: the one-to-one correspondence between the
steps in a no reduction sequence and the non-administrative steps in a ∼no reduction
sequence.

Definition 6.1 (Well-formed environments and closures). An environment ρ is l-well-
formed, written wf (ρ, �), if ρ is an interleaving of levels and proper closures s.t.:

(i) the subsequence of ρ’s levels is strictly decreasing and bounded by �,
(ii) for any decomposition ρ1 : T[ρ ′] : ρ2 of ρ, then ρ ′ is �′-well-formed where �′ is less

or equal than the leftmost level of ρ2 (or 0 if no such level exists).

Formally:

wf (ε, �)

wf (ρ, i) i + 1 ≤ �

wf (i + 1 : ρ, �)

wf (ρ ′, i) wf (ρ, j) i ≤ j ≤ �

wf (T[ρ ′] : ρ, �)

Well-formedness of environments is trivially extended to closures wf (M, �):

wf (n
, �)

n ≤ �

wf (n, �)

wf (ρ, �)

wf (T[ρ], �)

wf (M, �) wf (N, �)

wf (M · N, �)

wf (B, � + 1)

wf (���.B, �)

https://doi.org/10.1017/S0956796819000017 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000017

The KN abstract machine simulates normal-order reduction in lockstep 21

Lemma 6.1 (Well formedness is invariant under reduction). Let M such that wf (M, �) and

M
�−→∼

no M′. Then wf (M′, �).

Proof By induction on the depth of the derivation tree of M
�−→∼

no M′. �

A proof by straightforward induction is possible, thanks to the properties of λρ̃ men-
tioned in Section 5. We invite readers to prove this lemma in calculi with lexical
adjustments such as Munk (2008) and Danvy et al. (2013). See Sections 1.2 and 7.

Definition 6.2 (Substitution function). Function σ flattens a closure to a term by
performing the delayed substitutions in it.

σ (C, N) → �

σ (n[ρ], �) =
{

σ (nth(ρ), �) if n < |ρ|
n − (|ρ| − �) if n ≥ |ρ|

σ ((λ.B)[ρ], �) = σ (���.B[� + 1 : ρ], �)
σ ((M N)[ρ], �) = σ (M[ρ] · N[ρ], �)

σ (���.B, �) = λ.σ (B, � + 1)
σ (n, �) = � − n

σ (M · N, �) = (σ (M, �)) (σ (N, �))
σ (n
, �) = n

Function σ simulates capture-avoiding substitution in the pure lambda calculus, as
proven by Lemma 6.7 below. The function improves the homonymous substitution func-
tion in Biernacka & Danvy (2007, p. 6:9). The current nesting level is carried as a
parameter, and both index alignment and parameters-as-levels are taken into account. In
the 2nd clause, σ increments the de Bruijn level of the formal parameter that is pushed on
the environment, but does not increment the current nesting level. It is in the 4th clause,
when going under closure abstraction, that the current nesting level is incremented without
affecting the body’s environment. The remaining clauses are unsurprising in the light of
Figure 10.

Definition 6.3 (Structural induction principle). Given a predicate on closures P the
(strong) structural induction principle for P is

(∀n.P(n))
∧ (∀n.P(n
))
∧ (∀M.∀N.P(M) =⇒ P(N) =⇒ P(M · N))
∧ (∀B.P(B) =⇒ P(���.B))
∧ (∀T .∀ρ.(∀M ∈ ρ.P(M)) =⇒ P(T[ρ]))
=⇒ ∀M.P(M)

The proofs of Lemmas 6.3–6.7, the proofs of Lemmas 6.10 and 6.11 and the proof of
Theorem 6.13 rely on this induction principle.

A weaker induction principle can be obtained using the order on closures induced by
their height, whether the closures are arbitrary or �-well formed. A closure decreases its
height after retrieving a binding or after ephemeral expansion.

https://doi.org/10.1017/S0956796819000017 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000017

22 Á. García-Pérez and P. Nogueira

Definition 6.4 (Height of a closure). The height of a closure is calculated by function h:

h(C) → N

h(n[ρ]) =
{

1 + h(nth(ρ)) if n < |ρ|
0 if n ≥ |ρ|

h((λ.B)[ρ]) = 1 + h(���.B[n : ρ])
h((M N)[ρ]) = 1 + h(M[ρ] · N[ρ])

h(���.B) = 1 + h(B)
h(n) = 0

h(M · N) = 1 + h(M) + h(N)
h(n
) = 0

The proof of Lemma 6.12 relies on the induction principle obtained from this height
function.

Notation 6.2. We write μn
m for an environment consisting uniquely of formal parameters

m + n : . . . : m + 1, where n, m ≥ 0.

Lemma 6.3 (Shifting and σ commute). For any �, m ≥ 0 and T[ρ] a proper closure such
that wf (T[ρ], �), then

σ (T[ρ], � + m) ≡ ↑m
0 (σ (T[ρ], �))

In words, flattening a closure with a level � + m yields the same result as flattening the
closure with level � and then shifting it by m with a 0 cutoff. In other words, adding m to
the nesting level � represents an implicit shifting operation. To be able to use induction,
Lemma 6.3 has to be generalised by considering how the environment ρ grows with new
formal parameters n at its left, i.e. when T ≡ λ . . . λ.B. The shifting function ↑m

0 crosses
the lambda symbols in T , and for that some appropriate ranges for the formal parameters
at the left of ρ have to be provided.

Lemma 6.4 (Generalises Lemma 6.3). For any �0, �, m, k0, k ≥ 0, if wf (T[ρ], �0) and �0 ≤
� then

σ (T[μk
�+m+k0

: ρ], � + m + k0 + k) ≡ ↑m
k0+k (σ (T[μk

�+k0
: ρ], � + k0 + k))

Proof By induction on T[μk
�+k0

: ρ] generalising the property over �0, �, m, k0, k ≥ 0.
Since wf (T[ρ], �0) holds, we only need to consider the following cases, which include
the base case of the induction:

Case T ≡ n: We distinguish the sub-cases:

Case n < k: Then n points respectively to the formal parameters in each environ-
ment, i.e. nth(μk

�+m+k0
: ρ) = � + m + k0 + k − n and nth(μk

�+k0
: ρ) = � + k0 + k − n.

We need

σ (� + m + k0 + k − n, � + m + k0 + k) ≡ ↑m
k0+k (σ (� + k0 + k − n, � + k0 + k))

which simplifies to n ≡ ↑m
k0+k n. The latter trivially holds since n < k0 + k.

https://doi.org/10.1017/S0956796819000017 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000017

The KN abstract machine simulates normal-order reduction in lockstep 23

Case k ≤ n < k + |ρ|: Then: nth(μk
�+m+k0

: ρ) = nth(μk
�+k0

: ρ) = M. We distinguish
the sub-cases:

Case M ≡ p: From the assumption wf (T[ρ], �0), we know p ≤ �0 ≤ �. We need

σ (p, � + m + k0 + k) ≡ ↑m
k0+k (σ (p, � + k0 + k))

Let q = � − p ≥ 0. The goal simplifies to q + m + k0 + k ≡ ↑m
k0+k (q + k0 + k),

which holds by definition of ↑m
k0+k since q + k0 + k ≥ k0 + k.

Case M ≡ T ′[ρ ′]: We need σ (T ′[ρ ′], � + m + k0 + k) ≡ ↑m
k0+k (σ (T ′[ρ ′], � +

k0 + k)). Let k′ = k0 + k, then the goal is σ (T ′[ρ ′], � + k′ + m) ≡ ↑m
k′

(σ (T ′[ρ ′], � + k′)). From the assumption wf ((T[ρ]), �0), we know that
wf (T ′[ρ ′], �′) and �′ ≤ �0 ≤ �. The goal holds by the induction hypothesis
replacing �0 by �′ and k0 by k′, and letting k = 0.

Case n ≥ k + |ρ|: We need

n − (|μk
�+m+k0

: ρ| − (� + m + k0 + k)) ≡ ↑m
k0+k (n − (|μk

�+k0
: ρ| − (� + k0 + k)))

Let q = n − (k + |ρ|) ≥ 0. The goal simplifies to

q + � + m + k0 + k ≡ ↑m
k0+k (q + � + k0 + k)

which holds by definition of ↑m
k0+k since q + � + k0 + k ≥ k0 + k.

Case T ≡ λ.B: Both σ and ↑m
k0+k cross the lambda, and we need

λ.σ (B[μk+1
�+m+k0

: ρ], � + m + k0 + k + 1) ≡ λ. ↑m
k0+k+1 (σ (B[μk+1

�+k0
: ρ], � + k0 + k + 1))

which holds by the induction hypothesis.
Case T ≡ M N: By the induction hypothesis.

�

We illustrate the intuition of Lemma 6.4 with an example. Consider the term T ≡
(λ.λ.λ.2)0 and the ∼no reduction sequence

((λ.λ.λ.2)0)[ε]
0−→∗∼

no
(���.(λ.λ.2)[1]) · 0[ε]

0−→∼
no (λ.λ.2)[0[ε]]

Let us check Lemma 6.3 over the obtained 0-well-formed proper closure (λ.λ.2)[0[ε]] and
then calculate:

σ ((λ.λ.2)[0[ε]], m) ≡ ↑m
0 (σ ((λ.λ.2)[0[ε]], 0))

⇐⇒ {σ and ↑ cross outer lambda}
λ. σ ((λ.2)[m + 1 : 0[ε]], m + 1) ≡ λ. ↑m

1 (σ ((λ.2)[1 : 0[ε]], 1))

This calculation explains whence the coefficient that increases the current nesting level
when crossing lambdas (let us call it k′ := 1) comes from, and whence the padding m + 1
and 1 that keep index alignment respectively at each side of the goal come from. By
stripping off the outermost lambda the goal now has the shape

σ ((λ.2)[μk′
�+m : 0[ε]], � + k′ + m) ≡ ↑m

k′ (σ ((λ.2)[μk′
� : 0[ε]], � + k′))

which is not what Lemma 6.4 says but close. Let us show what is missing. Let us check
another instance of the statement of the lemma over the 1-well-formed proper closure
(λ.2)[1 : 0[ε]] that we obtain by dropping the outermost lambda on the right-hand side of
the goal before. We set coefficient � to the current level 1, reset coefficient k′ to zero and

https://doi.org/10.1017/S0956796819000017 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000017

24 Á. García-Pérez and P. Nogueira

calculate:

σ ((λ.2)[1 : 0[ε]], m + 1) ≡ ↑m
0 (σ ((λ.2)[1 : 0[ε]], 1))

⇐⇒ {σ and ↑ cross outer lambda (now k′ := 1)}
λ. σ (2[m + 2 : 1 : 0[ε]], m + 2) ≡ λ. ↑m

1 (σ (2[2 : 1 : 0[ε]], 2))
⇐⇒ {environment lookup}

λ. σ (0[ε], m + 2) ≡ λ. ↑m
1 (σ (0[ε], 2))

The binding 0[ε] is retrieved from the environment. However, the current nesting level is
� + k′ = 2, instead of 0 at which the binding 0[ε] was pushed on the environment. Two
refinements have to be made in order to adapt the induction hypothesis to the current goal.

The first refinement is to decouple �0 from the coefficient � such that wf (T[ρ], �0), and
to require that �0 ≤ �. Happily, wf (T[ρ], �0) guarantees that any binding N[ρ ′] contained
in ρ is �′-well-formed for some �′ ≤ �0, and before applying the induction hypothesis a
new �0 is set to �′, i.e. �0 := �′.

The second refinement involves the padding μ in the environments and the coefficient
k′. We can only assume that the retrieved binding has an empty padding or we would lose
generality. But, an empty padding does not match the μk′

�+m nor the μk′
� that we arrived at

in the shape of the goal in the previous step. (By definition, the size of both paddings is
k′, and coefficient k′ is incremented any time a lambda is crossed.) The solution is to split
the k′ into two (i.e. k′ = k0 + k) such that the excess k over k0 corresponds with the size
of the paddings in the goal. When a lambda is crossed, k is incremented. Before applying
the induction hypothesis over a closure retrieved from the environment, the increment k
is transferred to the accumulated increment k0 (i.e. k0 := k0 + k) and the new k is reset to
zero. In our example the coefficients are �0 = 1, � = 1, k0 = 0 and k = 1, and wf (0[ε], �′)
with �′ = 0. Before applying the induction hypothesis we let �0 := �′, � := 0, k0 := 1 and
k := 0. Stripping off the outermost lambda, the goal has the shape

σ (0[μk
�+m+k0

: ε], � + m + k0 + k) ≡ ↑m
k0+k (σ (0[μk

�+k0
: ε], � + k + k0))

which now matches Lemma 6.4.
Now we prove that σ performs capture avoiding substitution in the pure lambda calcu-

lus. The proof also requires generalised lemmata, but a unique coefficient for the increment
on the nesting level is enough (we call it k in Lemma 6.5, and m in Lemma 6.7).

Lemma 6.5 (Substitution index exceeded by level). For any �0, �, m ≥ 0 such that �0 ≤
�, and T[ρ] a proper closure such that wf (T[ρ], �0), then [S/m](σ (T[ρ], � + m + 1)) ≡
σ (T[ρ], � + m).

In words, whenever the nesting level is strictly bigger than the substitution index m, the
substitution function [S/m]_ discards the subject of the substitution S and shifts the indices
in the flattened closure σ (T[ρ], � + m + 1) such that the result is equivalent to the flattened
closure σ (T[ρ], � + m).

Lemma 6.6 (Generalises Lemma 6.5). For any �0, �, m, k ≥ 0, if wf (T[ρ], �0) and �0 ≤ �,
then

[S/m + k](σ (T[μk
�+m+1 : ρ], � + m + 1 + k)) ≡ σ (T[μk

�+m : ρ], � + m + k)

https://doi.org/10.1017/S0956796819000017 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000017

The KN abstract machine simulates normal-order reduction in lockstep 25

Proof By induction on T[μk
�+m : ρ] generalising the property over �0, �, m, k ≥ 0. Since

T[ρ] is an �0-well-formed proper closure, we only need to analyse the following cases,
which cursorily include the base case of the induction:

Case T ≡ n: We distinguish the sub-cases:

Case n < k: Then n points respectively to the formal parameters in each environ-
ment, i.e. nth(μk

�+m+1 : ρ) = � + m + 1 + k − n, and nth(μk
�+m : ρ) = � + m + k − n.

We need

[S/m + k](σ (� + m + 1 + k − n, � + m + 1 + k)) ≡ σ (� + m + k − n, � + m + k)

which simplifies to [S/m + k]n ≡ n. The latter holds by the definition of [_/_]_ since
k > n.
Case k ≤ n < k + |ρ|: Then: nth(μk

�+m+1 : ρ) = nth(μk
�+m : ρ) = M. We distinguish

the sub-cases:

Case M ≡ p : From the assumption wf (T[ρ], �0) we know that p ≤ �0 ≤ �. We
need

[S/m + k](σ (p, � + m + 1 + k)) ≡ σ (p, � + m + k)

which simplifies to [S/m + k](q + 1) ≡ q, where q ≥ m + k. The latter holds by
the definition of [_/_]_.
Case M ≡ T ′[ρ ′]: We need [S/m + k](σ (T ′[ρ ′], � + m + 1 + k)) ≡ σ (T ′[ρ ′],
� + m + k) where wf (T ′[ρ+′], �′) and �′ ≤ �0 ≤ �. The goal holds by the induc-
tion hypothesis replacing m by m + k, and letting k = 0.

Case n ≥ k + |ρ|: We need

[S/m + k](n − |μk
�+m+1 : ρ| + � + m + 1 + k) ≡ n − |μk

�+m : ρ| + � + m + k

which simplifies to [S/m + k](q + 1) ≡ q, where q = n − |ρ| + � + m. The latter
holds by the definition of [_/_]_, since n − |ρ| ≥ k.

Case T ≡ λ.B: Both σ and [_/_]_ cross the lambda, and we need

λ.[S/m + k + 1](σ (B[μk+1
�+m+1 : ρ], � + m + 1 + k + 1)) ≡ λ.σ (B[μk+1

�+m : ρ], � + m + k + 1)

which holds by the induction hypothesis.
Case T ≡ M N: By the induction hypothesis. �

Lemma 6.7 (Interaction between σ and [_/_]_). For any � ≥ 0 and B[N[ρ ′] : ρ] a proper
closure such that wf (B[N[ρ ′] : ρ], �), then

σ (B[N[ρ ′] : ρ], �) ≡ [σ (N[ρ ′], �)/0](σ (B[� + 1 : ρ], � + 1))

In words, for any nesting level �, flattening a closure B[N[ρ ′] : ρ] (i.e. the body of a closure
abstraction ���.B[� + 1 : ρ] where a closure subject N[ρ ′] is pushed on the position pointed
by index 0) yields the same term than the substitution of flattened subject σ (N[ρ ′], �) for 0
in flattened body σ (B[� + 1 : ρ], � + 1).

https://doi.org/10.1017/S0956796819000017 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000017

26 Á. García-Pérez and P. Nogueira

Lemma 6.8 (Generalises Lemma 6.7). For any �0, �, m ≥ 0, if wf (B[N[ρ ′] : ρ], �0) and
�0 ≤ �, then

σ (B[μm
� : N[ρ ′] : ρ], � + m) ≡ [σ (N[ρ ′], �)/m](σ (B[μm

�+1 : � + 1 : ρ], � + m + 1))

Proof By induction on B[μm
�+1 : � + 1 : ρ] generalising the property over �0, �, m ≥ 0.

Since wf (B[N[ρ ′] : ρ], �0) we only need to analyse the following cases, which cursorily
include the base case of the induction:

Case B ≡ n: We distinguish the sub-cases:

Case n = m: Then n points respectively to the closure subject N[ρ ′] and to the formal
parameter � + 1, i.e. nth(μm

� : N[ρ ′] : ρ) = N[ρ ′], and nth(μm
�+1 : � + 1 : ρ) = � + 1.

By definition of [_/_]_ we need σ (N[ρ ′], � + m) ≡ ↑m
0 σ (N[ρ ′], �), which holds by

Lemma 6.3 where k0, k, �0 = 0.
Case n < m: Then n points respectively to the formal parameters in each
environment, i.e. nth(μm

� : N[ρ ′] : ρ) = � + (m − n), and nth(μm
�+1 : � + 1 : ρ) =

� + (m − n) + 1. We need σ (�+(m−n), �+m) ≡ [σ (N[ρ ′], �)/m](σ (� + (m − n) + 1,
� + m + 1)), which simplifies to n ≡ [σ (N[ρ ′], �)/m]n. The lemma holds by definition
of [_/_]_ since m > n.
Case m < n ≤ m + |ρ|: Then: nth(μm

� : N[ρ ′] : ρ) = nth(μm
�+1 : � + 1 : ρ) = M. We

distinguish the sub-cases:

Case M ≡ p: From the assumption wf (B[N[ρ ′] : ρ], �0), we know that p ≤
�0 ≤ �. We need σ (p, � + m) ≡ [σ (N[ρ ′], �)/m](σ (p, � + m + 1)), which sim-
plifies to q ≡ [σ (N[ρ ′], �)/m](q + 1), where q ≥ m. The lemma holds because
[_/_]_ decrements by one every index which is greater than m.
Case M ≡ T[ρ ′′]: We need

σ (T[ρ ′′], � + m) ≡ [σ (N[ρ ′], �)/m](σ (T[ρ ′′], � + m + 1))

where wf (T[ρ ′′], �′). The lemma holds by Lemma 6.5 since �′ ≤ �.

Case n > m + |ρ|: We need

n − ((m + 1 + |ρ|) − (� + m)) ≡ [σ (N[ρ ′], �)/m](n − ((m + 1 + |ρ|) − (� + m + 1)))

which simplifies to q ≡ [σ (N[ρ ′], �)/m](q + 1) where q = n − 1 − |ρ| + �. The latter
holds by the definition of [_/_]_ because q + 1 > m.

Case B ≡ λ.M: Both σ and [_/_]_ cross the lambda, and we need

λ.σ (M[μm+1
� : N[ρ ′] : ρ], � + m + 1)

≡ λ.[σ (N[ρ ′], �)/m + 1](σ (M[μm+1
�+1 : ρ], � + 1 + m + 1))

which holds by the induction hypothesis.
Case B ≡ M N: By the induction hypothesis. �

The axioms in Figure 10 except (βρ̃) are the notions of reduction for ephemeral expansion,
lookup and result index calculation, which perform computations similar to function σ . We
consider the steps whose derivations end in those axioms as administrative, and split the
∼no strategy into the following strategies.

https://doi.org/10.1017/S0956796819000017 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000017

The KN abstract machine simulates normal-order reduction in lockstep 27

Definition 6.5 (
�−→βρ̃ and

�−→ρ̃). Reduction
�−→βρ̃ is the strategy defined by rules (βρ̃),

(μ1ρ̃), (μ2ρ̃), (νρ̃) and (ξ ρ̃) in Figure 10. Reduction
�−→ρ̃ is the strategy defined by rules

(APPρ̃), (LAMρ̃), (VARρ̃), (FREρ̃), (PARρ̃), (μ1ρ̃), (μ2ρ̃), (νρ̃) and (ξ ρ̃) in Figure 10.

Lemma 6.9 (
�−→∼

no splits into
�−→βρ̃ and

�−→ρ̃). Let M0, . . . , Mn be a ∼no reduction

sequence at level �, and let M
�−→βρ̃ M0 and M′ �−→ρ̃ M0. Then both M, M0, . . . , Mn and

M′, M0, . . . , Mn are ∼no reduction sequences at level �.

Proof The semantics of
�−→∼

no in Figure 10 is syntax-directed and deterministic. Since
it defines a one-step strategy, a derivation’s upward-branching-tree consists of a single
branch with a unique axiom in its summit. Partitioning the axioms in disjoint sets, and
considering each set together with all the compatibility rules, results in sub-strategies
of ∼no. �

We distinguish the shape of a closure either at the beginning of a reduction sequence or
after a (βρ̃) step, which we call a start closure, and immediately before a (βρ̃) step, which
we call an expanded closure.

Definition 6.6 (Start closure and expanded closure). A start closure has the following
shape:

STC ::= 	n

| �[ρ] { · �[ρ]}∗
| n { · �[ρ]}∗
| 	n
 { · NFC}∗ · STC { · �[ρ]}∗
| ���.STC

An expanded closure at level � has the following shape:

EX�
C ::= (���.�[� + 1 : ρ]){ · �[ρ]}+

| 	n
 { · NFC}∗ · EX�
C { · �[ρ]}∗

| ���.EX�+1
C

We have defined start closures such that they include the closure normal forms. This is
a technical requirement that eases the proofs of Lemmas 6.10, 6.11 and 6.12 below. The
expanded closures are indexed by the de Bruijn level at which they occur, such that if the
βρ̃ redex signalled by the expanded closure occurs at level �, then the formal parameter in
its body is � + 1.

The set of �-well-formed closures irreducible by
�−→ρ̃ is made up of closure normal

forms and expanded closures at level �.
Now we show that administrative reduction is akin to substitution for closures that flatten

into a closure normal form.

Lemma 6.10 (Administrative reduction to weak head normal form). Let � ≥ 0 and S ∈ STC

such that S �∈ WHNFC, and T ∈ WHNF. If wf (S, �) and σ (S, �) = T, then S
�−→ρ̃ S′ ∈ STC

and either S′ �∈ NFC, or otherwise S′ ∈ NFC and S′ ∼= T.

https://doi.org/10.1017/S0956796819000017 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000017

28 Á. García-Pérez and P. Nogueira

Proof The proof goes by induction on S. We distinguish the following cases:

Case S ≡ 	n
: Then n
�−→ρ̃ 	� − n
 and the lemma holds.

Case S ≡ n: Then n
�−→ρ̃ 	� − n
 and the lemma holds.

Case S ≡ n[ρ]: If n ≥ |ρ|, then n[ρ]
�−→ρ̃ 	n − (|ρ| − �)
 and the lemma holds. If n < |ρ|,

since S is well formed, then nth(ρ) can be either m or M[ρ ′] and the lemma holds.

Case S ≡ (M N)[ρ]: Then (M N)[ρ]
�−→ρ̃ M[ρ] · N[ρ] and the lemma holds.

Case S ≡ (λ.B)[ρ]: Then (λ.B)[ρ]
�−→ρ̃ ���.B[� + 1 : ρ] and the lemma holds.

Case S ≡ S1 · N[ρ] where S1 ∈ STC and S1 �∈ WHNFC: We have that T = M ′ N ′ such
that M ′ ≡ σ (S1, �) and N ′ ≡ σ (N[ρ], �), and where M ′ is in WHNF. We know that S1

cannot be an abstraction closure, or otherwise M would not be in WHNF. Since S1 is a
start closure in WHNFC that is not an abstraction closure, then S1 can only be an index clo-
sure, an application closure, a nested application of proper closures or a nested application
of proper closures with a formal parameter as the leftmost operator. Since S1 is �-well-

formed, neither of these reduces by
�−→ρ̃ to a closure abstraction, and thus we know that S′

1

is not a closure abstraction. By the induction hypothesis, S1
�−→∗̃

ρS
′
1 ∈ STC. By rule (μ1ρ̃)

then S1 · N[ρ]
�−→ρ̃ S′

1 · N[ρ] ≡ S′ ∈ STC and we are done since S′ is not in NFC. �

Lemma 6.11 (Administrative reduction to normal form). Let � ≥ 0 and S ∈ NFC such that

S ∈ WHNFC and S �∈ NFC, and T ∈ NF. If wf (S, �) and σ (S, �) = T, then S
�−→ρ̃ S′ ∈ STC

and either S′ ∈ WHNFC and S′ �∈ NFC, or otherwise S′ ∈ NFC and S′ ∼= T.

Proof The proof goes by induction on S, generalising the property over �. The cases where
S ≡ 	n
, S ≡ n { · Ni[ρi]}∗, and S ≡ M[ρ] { · Ni[ρi]}∗ are impossible because we know that
S is in WHNFC and not in NFC. We consider the following cases:

Case S ≡ S1 · N[ρ] where S1 ∈ STC, S1 ∈ WHNFC and S1 �∈ NFC: By the induction

hypothesis we know that S1
�−→ρ̃ S′

1 ∈ STC. We also know that S1 is not a closure
abstraction because otherwise S would not be in WHNFC. Therefore, by rule (μ2ρ̃),

S
�−→ρ̃ S′

1 · N[ρ], which is a start closure in WHNFC and not in NFC, and the lemma
holds.
Case S ≡ S1 · S2 where S1 ≡ 	n
 { · Ni}∗ with Ni ∈ NFC, and S2 ∈ STC not in NFC: We
have that T ≡ M N ∈ NF where σ (S1, �) = M and σ (S2, �) = N . We distinguish the fol-
lowing subcases:

Subcase S2 �∈ WHNFC: Then by Lemma 6.10 we know that S2
�−→ρ̃ S′

2 ∈ STC. By

rule (νρ̃), we have that S
�−→ρ̃ S1 · S′

2 ≡ S′. If S′
2 is not in NFC, then S′ is not in

NFC either and the lemma holds. If S′
2 is in NFC, then S′ is in NFC and we know by

Lemma 6.10 that S′
2
∼= N , and thus S′ ≡ S1 · S′

2
∼= M N ≡ T and the lemma holds.

Subcase S2 ∈ WHNFC: Then by the induction hypothesis we have that S2
�−→ρ̃ S′

2 ∈
STC. By rule (νρ̃), we have that S

�−→ρ̃ S1 · S′
2 ≡ S′. If S′

2 is not in NFC, then S′ is
not in NFC either and the lemma holds. If S′

2 is in NFC, then S′ is in NFC and we

https://doi.org/10.1017/S0956796819000017 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000017

The KN abstract machine simulates normal-order reduction in lockstep 29

know by the induction hypothesis that S′
2
∼= N , and thus S′ ≡ S1 · S′

2
∼= M N ≡ T and

the lemma holds.

Case S ≡���.S1: We have that σ (S, �) = λ.B with B ∈ NF. We distinguish the following
subcases:

Subcase S1 �∈ WHNFC: Then by Lemma 6.10 we know that S1
�−→ρ̃ S′

1 ∈ STC. By

rule (ξ ρ̃), we have that S
�−→ρ̃ ���.S′

1 ≡ S′. If S′
1 is not in NFC, then S′ is not in NFC

either and the lemma holds. If S′
1 is in NFC, then S′ is in NFC and we know by

Lemma 6.10 that S′
1
∼= B, and thus S′ ≡���.S′

1
∼= λ.B ≡ T and the lemma holds.

Subcase S1 ∈ WHNFC but S1 �∈ NFC: Then by the induction hypothesis we have

that S1
�−→ρ̃ S′

1 ∈ STC. By rule (ξ ρ̃), we have that S
�−→ρ̃ ���.S′

1 ≡ S′. If S′
1 is not

in NFC, then S′ is not in NFC either and the lemma holds. If S′
1 is in NFC, then S′ is

in NFC and we know by the induction hypothesis that S′
1
∼= B, and thus S′ ≡ S1 · S′

2
∼=

M N ≡ T and we are done. �

Our goal now is to show that administrative reduction on a well-formed start closure
either delivers a closure normal form, or it expands the closure until it locates the next
βρ̃-redex to be contracted.

Lemma 6.12 (Administrative reduction locates next beta redex). Let � ≥ 0, S ∈ STC and
M ∈ � such that M −→no M ′. If wf (S, �) and σ (S, �) = M, then there exists X ∈ EX�

C such

that wf (X, �) and S
�−→∗̃

ρX.

Proof The proof goes by induction on h(S), generalising the property over �. The cases
where S ≡ 	n
 and S ≡ n are impossible because we know that M is not in NF. We first
assume that S �∈ WHNFC and consider the following cases:

Case S ≡ n[ρ]: Since σ (n[ρ], �) = M and M −→no M ′, then n < |ρ| and n[ρ]
�−→ρ̃ nth(ρ)

where nth(ρ) �≡ m, and the lemma holds by applying the induction hypothesis to nth(ρ).

Case S ≡ (M N)[ρ]: Then (M N)[ρ]
�−→ρ̃ M[ρ] · N[ρ] and by applying the induction

hypothesis to M[ρ] · N[ρ].

Case S ≡ (λ.B)[ρ]: Then (λ.B)[ρ]
�−→ρ̃ ���.B[� + 1 : ρ] and by applying the induction

hypothesis to ���.B[� + 1 : ρ].
Case S ≡ S1 · N[ρ] where S1 ∈ STC and S1 �∈ WHNFC: We distinguish the following
subcases:

Subcase S1 ≡ (λ.B)[ρ ′]: By rule (μ1ρ̃) then S1 · N[ρ]
�−→ρ̃ (���.B[� + 1 :

ρ]) · N[ρ ′] ≡ X where X is an �-well-formed expanded closure at level �, and
the lemma holds.
Subcase S1 �≡ (λ.B)[ρ ′]: By Lemma 6.10 we know that S1

�−→ρ̃ S′
1 ∈ STC. Since

S1 �∈ WHNFC is a start closure that is not an abstraction closure, then S1 can only
be an index closure, an application closure, a nested application of proper closures
or a nested application of proper closures with a formal parameter as the leftmost
operator. Since S1 is �-well-formed, neither of these reduces in one step to a closure
abstraction, and thus we know that S′

1 is not a closure abstraction. By rule (μ1ρ̃)

https://doi.org/10.1017/S0956796819000017 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000017

30 Á. García-Pérez and P. Nogueira

we have that S ≡ S1 · N[ρ]
�−→ρ̃ S′

1 · N[ρ] ≡ S′ and the lemma holds by applying the
induction hypothesis to S′.

Now we assume that S ∈ WHNFC and consider the following cases:

Case S ≡ S1 · N[ρ] where S1 ∈ STC, S1 ∈ WHNFC and S1 �∈ NFC: We know that S1 is
not a closure abstraction because then S would not be in WHNFC. We distinguish
whether σ (S1, �) ∈ NF or not. If σ (S1, �) ∈ NF, then we apply Lemma 6.11 to S1, and

we obtain S1
�−→ρ̃ S′

1. Since S1 ∈ WHNFC but S1 is not an abstraction, by rule (μρ̃2)

then S1 · N[ρ]
�−→ρ̃ S′

1 · N[ρ], and the lemma holds by applying the induction hypoth-
esis to S′

1 · N[ρ]. If σ (S1, �) �∈ NF, then we apply the induction hypothesis to S1 and

get S1
�−→ρ̃ X1. By rule (μρ̃2) then S1 · N[ρ]

�−→ρ̃ X1 · N[ρ], and the lemma holds with
X ≡ X1 · N[ρ].
Case S ≡ S1 · S2 where S1 ≡ 	n
 { · Ni}∗ with Ni ∈ NFC, and S2 ∈ STC and not in NFC:
We have that T ≡ M N ∈ NF where σ (S1, �) = M and σ (S2, �) = N . By rule (ν) we know

that N −→no N ′, and by the induction hypothesis S2
�−→∗̃

ρX2 ∈ EX�
C. By rule (νρ̃) then

S ≡ S1 · S2
�−→∗̃

ρS1 · X2 ≡ X and the lemma holds.
Case S ≡���.S′: Straightforward by the induction hypothesis and rules (ξ) and (ξ ρ̃). �

Now we show our main result. We first present a commutation theorem that states that
normal-order (pure and λρ̃ ’s) commutes with the substitution function σ . Lockstep simu-
lation follows directly from the commutation theorem since the start term in a no reduction
sequence uniquely determines the start closure in the corresponding ∼no reduction sequence,
and both no and ∼no are reduction strategies.

Theorem 6.13 (Normal-order commutes with the substitution function). Let � ≥ 0, S0 be
a start closure, and M0 be a term. If wf (S0, �) and σ (S0, �) ≡ M0, then either M0 ∈ NF and

there exists N ∈ NFC such that S0
�−→∗̃

ρN and σ (N, �) ≡ M0, or otherwise there exist M1 ∈
�, X ∈ EX�

C, and S1 ∈ STC such that wf (X, �) and wf (S1, �), and the following diagram
commutes:

S0 X S1

M0 M1

ρ̃

� ∗
βρ̃

�

no

σ (S0, �) σ (S1, �)

In words, given a term M0 and an �-well-formed start closure S0 such that σ (S0, �) ≡ M0,
either M0 is in normal form and S0 reduces via administrative reductions to a closure
normal form isomorphic to M0, or otherwise S0 reduces to an expanded closure X at level
� via administrative reductions and the β-reduction step M0 −→no M1 corresponds to the
∼no reduction sequence S0

�−→∗̃
ρX

�−→βρ̃ S1, which comprises one
�−→βρ̃ step after zero or

more
�−→ρ̃ steps.

https://doi.org/10.1017/S0956796819000017 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000017

The KN abstract machine simulates normal-order reduction in lockstep 31

Proof If M0 ∈ NF, then by successively applying Lemmas 6.10 and 6.11 there exists N ∈
NFC such that N ∼= M0 and S0

�−→∗̃
ρN. Otherwise, M0 �∈ NF and then there exists M1 such

that M0 −→no M1 and by Lemma 6.12 there also exists X ∈ EX�
C such that wf (X, �) and

S0
�−→∗̃

ρX. By Lemma 6.9 we know that the reduction sequence on the top row of the

commutation diagram is a ∼no reduction sequence. From S0
�−→∗̃

ρ X we have σ (S0, �) ≡
σ (X, �). And from X ∈ EX�

C we know that X reduces by a
�−→βρ̃ step to the start closure S1.

Hence, it is sufficient to prove the theorem when no ρ̃-reduction occurs. For that, we do
an induction over X (as an expanded closure at level �), generalising the property over �.
Three cases arise:

Case X ≡ (���.B[� + 1 : ρ]) · N[ρ ′] { · Ti[ρi]}∗: We have

M0 ≡ (λ.σ (B[� + 1 : ρ], � + 1))(σ (N[ρ ′], �)){σ (Ti[ρi], �)}∗,

which reduces by a
�−→βρ̃ step to the start closure S1 ≡ B[N[ρ ′] : ρ] { · Ti[ρi]}∗. The com-

muting condition σ (B[N[ρ ′] : ρ], �) ≡ [σ (N[ρ ′], �)/0](σ (B[� + 1 : ρ], � + 1)) holds by
Lemma 6.7, the antecedent of Lemma 6.7 being a direct consequence of wf (X, �).
Case X ≡���.X′: We have that S1 is necessarily of the form ���.S′

1. From wf (X, �), we have
wf (X′, � + 1). By the induction hypothesis, we know that σ (X′, � + 1) −→no σ (S1, � + 1)

and that X′ �+1−→βρ̃ S′
1. Hence, σ (X, �) ≡ σ (���.X′, �) −→no σ (���.S′

1, �) ≡ σ (S1, �) and

���.X
�−→βρ̃ ���.S′

1.
Case X ≡ 	n
 { · Ni}∗ · X′ { · Tj[ρj]}∗ where all Ni ∈ NFC: In this case, the βρ̃-redex of X
is necessarily in X′, implying that S1 ≡ 	n
 { · Ni}∗ · S′

1 { · Tj[ρj]}∗. From wf (X, �), we have
wf (X′, �). By the induction hypothesis we know that σ (X′, �) −→no σ (S′

1, �) and that

X′ �−→βρ̃ S′
1. Hence,

σ (X, �) ≡ σ (n
 { · Ni}∗ · X′ { · Tj[ρj]}∗, �)

−→no σ (n
 { · Ni}∗ · S′
1 { · Tj[ρj]}∗, �) ≡ σ (S1, �)

and 	n
 { · Ni}∗ · X′ { · Tj[ρj]}∗, �)
�−→βρ̃ 	n
 { · Ni}∗ · S′

1 { · Tj[ρj]}∗. �

Corollary 6.14 (Lockstep simulation). Let M be a term. Then the no reduction sequence
starting at M and the ∼no reduction sequence starting at the closure M[ε] and at the nesting
level 0 correspond to each other in lockstep. That is, each −→no step in the no reduction

sequence corresponds to a segment of the ∼no reduction sequence that comprises one
0−→βρ̃

step and zero or more
0−→ρ̃ steps that surround the

0−→βρ̃ step, and vice versa. In words,
there is a one-to-one correspondence between the −→no steps and the non-administrative

0−→∼
no steps.

Proof Straightforward from Theorem 6.13, since M[ε] is a 0-well-formed start closure
and both no and ∼no are reduction strategies. �

Consider the no reduction sequence from Example 3.1 (page 10). It corresponds in lock-
step with the ∼no reduction in Figure 9, as shown by the following commuting diagrams

https://doi.org/10.1017/S0956796819000017 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000017

32 Á. García-Pérez and P. Nogueira

where the closure and term on the right in the first diagram are respectively the closure and
term on the left in the second diagram.

(λ.0((λ.0)((λ.0)0)))[ε] ���.	0
·((���.0[2:1])·((λ.0)0)[1]) ���.	0
 · 0[((λ.0)0)[1]:1]

λ.0((λ.0)((λ.0)0)) λ.0((λ.0)0)

ρ̃

0 ∗
βρ̃

0

no

σ (_, 0) σ (_, 0)

���.	0
 · 0[((λ.0)0)[1] : 1] ���.	0
 · ((���.0[2 : 1]) · 0[1]) ���.	0
 · 0[0[1] : 1]

λ.0((λ.0)0) λ.0 0

ρ̃

0 ∗
βρ̃

0

no

σ (_, 0) σ (_, 0)

All the closures above are 0-well formed. Additionally, (λ.0((λ.0)((λ.0)0)))[ε] and ���.	0
 ·
0[((λ.0)0)[1] : 1] are start closures in STC, and ���.	0
 · ((���.0[2 : 1]) · ((λ.0)0)[1]) and
���.	0
 · ((���.0[2 : 1]) · 0[1]) are expanded closures in EX0

C. The expanded sub-closures
(���.0[2 : 1]) · ((λ.0)0)[1] and (���.0[2 : 1]) · 0[1] in EX1

C correspond respectively to redexes
(λ.0)((λ.0)0) and (λ.0)0 in the no reduction sequence from Example 3.1.

7 Related and future work

Derivations of full-reducing abstract machines. The derivation of improved KN from
λρ̃’s structural operational semantics given in García-Pérez et al. (2013) is fully imple-
mented and differs significantly from the sketched derivation of Munk (2008). For a
detailed comparison and criticism, see pp. 169–174 of García-Pérez (2014). The derivation
also differs from Danvy et al. (2013) who present a derivation for a different full-reducing
machine of Curien (1986).

Full-reduction and hybridisation. In García-Pérez et al. (2013, p. 90), there is an inac-
curate statement of lockstep simulation. In that paper λρ̃-normal-order is defined in several
styles of operational semantics (structural, context-based and natural), with implementa-
tions provided for each of them. Of particular interest is the use of hybrid style for the
last two. Normal-order is a hybrid strategy in nature (contains a weaker subsidiary strat-
egy, namely, call-by-name) and it is thus better defined in hybrid style. See García-Pérez
(2014, Section 5.3) and García-Pérez & Nogueira (2014) for more on hybrid style and
hybrid nature.

Calculi with lexical adjustment. In Section 1.2 we have already discussed the frame-
work for abstract machines of Biernacka & Danvy (2007). Their substitution function
from λρ̂-terms to pure terms carries along a lexical offset that is used to adjust indices
when retrieving bindings from the environment. The offset is incremented when crossing
a lambda and is reset to zero after retrieving a binding from the environment. Similarly,
the environments of the full-reducing machines of Munk (2008) and Danvy et al. (2013)

https://doi.org/10.1017/S0956796819000017 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000017

The KN abstract machine simulates normal-order reduction in lockstep 33

carry along an offset that is used at binding lookup. In Section 4.1 we have referred to the
use of this extra lexical offset as lexical adjustment.

Lexical adjustment is also present in the λχ calculus of Lescanne & Rouyer-Degli (1995)
which, unlike most calculi, uses a de-Bruijn-levels representation of terms. Substitutions
are decorated with a depth that is incremented when crossing a lambda. The depth is
employed to recalculate the de Bruijn levels of the names in a binding when the latter
is retrieved from the environment. This resembles the lexical adjustment of Biernacka &
Danvy (2007) but for de Bruijn levels instead of de Bruijn indices.

All of Lescanne & Rouyer-Degli (1995), Biernacka & Danvy (2007), Munk (2008) and
Danvy et al. (2013) recalculate levels in bindings retrieved from the environment, or adjust
indices at binding lookup.

In contrast, the use of index alignment and parameters-as-levels do away with lexical
adjustment. Index calculations take place at the point where reduction encounters a free
variable or a formal parameter.

Calculi of explicit substitutions. Calculi of explicit substitutions have been extensively
studied, e.g. Abadi et al. (1991); Curien et al. (1996); Kesner (2007, 2009). Our λρ̃ calcu-
lus uses environments and is not a calculus of explicit substitutions in the tradition of the
seminal λσ calculus (Abadi et al., 1991). Environments are instances of explicit substi-
tutions but not the opposite. Environments are not composable like explicit substitutions,
and terms and closures (terms with environments) are separated sorts.

The usual concerns for calculi of explicit substitutions (confluence, strong normalisa-
tion, preservation of strong normalisation, simulation, composition of substitutions, etc.)
do not apply to λρ̃ which is untyped and not strongly normalising. Instead of preserva-
tion of strong normalisation (i.e. if a pure term is strongly normalising, then so is its
corresponding closure), because of lockstep simulation λρ̃ upholds preservation of nor-
malisation (i.e. if the pure term has a normal form, then so does its corresponding closure,
and the former is obtained from the latter via σ). Moreover, the typed term of λσ which
does not terminate (Melliès, 1995) is impossible to write in λρ̃ not for lack of types, which
may well be added to λρ̃, but because of environments, index alignment and parameters-
as-levels. The reader may try to reduce the typed term by hand using Figure 10, or by
machine using the normalisers implemented in García-Pérez et al. (2013).

The linear substitution calculus (hereafter LSC) is a calculus of explicit substitu-
tions which takes into account permutations of substitutions and structural equivalences
which can be optimised away (distilled) when they do not lead to redex contraction. In
particular, the LSC’s structural equivalences are between machine transitions of the full-
reducing Milner Abstract Machine (hereafter MAM) (Accattoli et al., 2015; Accattoli,
2016). However, the LSC ‘silently works modulo α-equivalence’ (Accattoli et al.,
2015, p. 5; Accattoli, 2016, p. 4) or, put similarly, performs ‘on-the-fly α-equivalence’
(Accattoli et al., 2015, p. 4). That is, it assumes a plain term representation and performs
α-conversion. On the other hand, the MAM employs an underspecified so-called ‘well-
namedness’ convention for terms where every bound and free variable differ (Accattoli
et al., p. 11; Accattoli, 2016, p. 6). This convention is underspecified because at face
value it is the same as the Barendregt convention, (Barendregt, 1990) which is
unstable under full-reduction due to the copying of operators in abstraction bodies,

https://doi.org/10.1017/S0956796819000017 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000017

34 Á. García-Pérez and P. Nogueira

e.g. (Pierce, 2002, p. 75). Witness the counter-example (λz.zz)(λx.λy.xy) which requires α-
conversion. Similarly with explicit substitution: (zz)[z �→ λx.λy.xy]. The LSC and MAM
are disconnected at the underspecified representation of terms. A proper representation has
to be chosen for the machine such that (i) it corresponds with the calculus’s term represen-
tation, (ii) it facilitates inter-derivation by program transformation and (iii) it is usable in
mechanised proofs, which is the case for terms in de Bruijn notation but not for terms up
to α-equivalence (Aydemir et al., 2005).

Naturally, distilling structural equivalences is of great value for any calculus. There are,
indeed, structural equivalences among KN’s transitions to exploit as optimisation steps
in the spirit of the LSC. Such equivalences must take into account index alignment and
parameters-as-levels. For instance, consider a closure ((λ.B)N)[ρ] in some ∼no reduction

sequence at level �. The closure reduces by a single
�−→βρ̃ step (plus administrative steps)

to B[N[ρ] : ρ]. This corresponds to the following single no step:

(λ.σ (B[� + 1 : ρ], � + 1))(σ (N[ρ], �)) −→no [σ (N[ρ], �)/0](σ (B[� + 1 : ρ, � + 1)))

By Lemma 6.7, the following holds:

σ (([N/0]B)[ρ], �) = [σ (N[ρ], �)/0](σ (B[� + 1 : ρ, � + 1)))

Therefore, by Lemma 6.7 and Theorem 6.13 the ∼no reduction sequences of ([N/0]B)[ρ]
and B[N[ρ] : ρ] have a common reduct at some reduction step. This can be construed as
‘the composition of implicit substitution [N/0] with explicit substitution [ρ] is equivalent
to explicit substitution [N[ρ] : ρ]’. This structural equivalence is reminiscent of the one
given in Accattoli & Kesner (2012, p.19) for the λj calculus that is a precursor of the LSC.

Calculi with locally nameless representation for terms. Such term representation uses
de Bruijn indices to represent bound variables and fresh names to represent variables that
are free in a scope (Pollack, 1994; Aydemir et al., 2008; Charguéraud, 2012). Names
are employed, among other things, to avoid de Bruijn index shifting. The operation of
variable opening on an abstraction λ.B recursively traverses B and maps the applied occur-
rences of the bound variable (the appropriate de Bruijn index in B) to a fresh name. This
operation requires, like shifting, a cutoff parameter that keeps track of the nesting level dur-
ing recursive traversal. It also requires an operation for fresh name generation, typically
implemented using natural numbers for names and increment for freshness. The inverse
operation of variable closing builds an abstraction λ.B from a term B and a name n by
replacing all occurrences (no shadowing possible in this representation) of the name n in
B by the appropriate de Bruijn index, also using a cutoff parameter to keep track of the
nesting level.

Index-aligned environments and parameters-as-levels are a form of locally nameless
representation that, instead of recursive traversals, uses an environment and calculations to
perform variable opening and closing. As shown in Figure 10, rules (LAMρ̃) and (ξρ̃) cor-
respond to variable opening in which a fresh name (incremented nesting level) is given to
the formal parameter (and pushed on the environment). Symmetrically, rules (PARρ̃) and
(ξρ̃) correspond to variable closing. The result index calculations of the first rule recovers
the index. The second rule leaves the abstraction scope ‘at return time’. The distinction

https://doi.org/10.1017/S0956796819000017 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000017

The KN abstract machine simulates normal-order reduction in lockstep 35

between free out-of-bounds variables and free in-bounds variables (applied occurrences)
is taken care of by axiom (FREρ̃).

Charguéraud’s 2nd solution8 to the POPLMark Challenge resembles Crégut’s
parameters-as-levels, but the environment stores the types of formal parameters, not
their levels. We think index-aligned environments, parameters-as-levels and balanced
derivations deserve to be explored as a possible solution to the POPLMark Challenge.

Weak lazy leftless systems. A mechanism reminiscent of index alignment can be found in
the ‘weak lazy leftless’ type system of Kiselyov (2018). The system keeps track of ‘ignored
context terms’ (akin to parameters of unapplied lambda abstractions) by pushing on the
judgement’s environment an ‘any type’ dummy placeholder. This type system is shown
to be equivalent to the type system without the placeholder. A denotational semantics is
given from terms of the weak lazy leftless type system to SKI combinators. It contains
a weakening rule (EW) that ignores the dummy placeholder, and an (EAbs1) rule that
performs the so-called K-optimisation (Peyton-Jones, 1987) which replaces an abstraction
over an ignored variable by the constant combinator. All the de Bruijn indices of terms of
the type system point to a binding on the (judgement’s) environment.

Future work. The λμμ̃r↑ calculus (Ariola et al., 2009) extends the λμμ̃ sequent calculus
(Curien & Herbelin, 2000) by adding de Bruijn indices and explicit substitutions. In Ariola
et al. (2009), they show that λμμ̃r↑ simulates both KAM and CEK. In sequent calculi,
reduction occurs at a bounded depth from the root of the term, such that it is possible to
define in the calculus a tail-recursive evaluator that captures the dispatch function carried
out by an abstract machine. Sequent calculi were designed to encode a particular deductive
structure and hence they are typed and strongly normalising. Our calculus is untyped and
our approach concerns KN’s ingredients for full reduction. Exploring whether those ingre-
dients can be carried to sequent calculi and whether this results in capturing the dispatch
function of KN are interesting questions that constitute future work.

As we have said many times by now, the one-step reduction relation of λρ̃ is a reduction
strategy. A one-step relation proper (like one-step −→β in the pure lambda calculus) may
be given which reduces the operands and/or the bindings in environments. This relation
would stage reduction in a way reminiscent of normalisation by evaluation: ephemeral
expansion does not proceed under lambda until a weak head normal form of the clo-
sure/binding is reached, βρ̃-contraction and lookup take place anywhere, and result index
calculation only takes place at the end of the process, in the ‘frozen’ normal-form con-
text in which the ‘active components’ of the input closure occur (see Definition 2.3 in
Barendregt et al. (1987) for a definition of active component in the pure lambda calcu-
lus). This reduction would be reminiscent of needed reduction (Barendregt et al., 1987)
but lifted to closures. The staged character of the reduction relation can be expressed in
hybrid style (García-Pérez, 2014, Section 5.3); (García-Pérez & Nogueira, 2014). With
this reduction relation, it could be possible to simulate other reduction strategies, in par-
ticular call-by-value and related. We conjecture this reduction relation would simulate in
lockstep a subrelation of needed reduction mentioned above, modulo the administrative

8 http://www.chargueraud.org/research/2006/poplmark.

https://doi.org/10.1017/S0956796819000017 Published online by Cambridge University Press

http://www.chargueraud.org/research/2006/poplmark
https://doi.org/10.1017/S0956796819000017

36 Á. García-Pérez and P. Nogueira

steps of expansion, lookup and index calculation. We think the proof would proceed by
induction given the machinery presented in this paper. This constitutes future work.

Acknowledgments

We are deeply grateful to Pierre-Yves Strub for mechanising a large portion of the lock-
step simulation proof in the Coq proof assistant. Pierre-Yves helped us sanitise the paper
proof and improved several definitions and lemmata. We are also deeply grateful to our
JFP editor, Jeremy Gibbons, for his excellent editorial support. Finally, we are deeply
grateful to all the anonymous reviewers for their patience and very pertinent suggestions
which have helped us improve the original submission substantially in terms of correct-
ness, presentation and scope. In particular, a comment by one reviewer led us to state
and prove Theorem 6.13 as a proper commuting diagram rather than as a conditional
diagram. The authors have carried out the research presented in this paper part-time at dif-
ferent institutions: the Babel Research Group of Universidad Politécnica de Madrid (both
authors), Reykjavik University and The IMDEA Software Institute (Álvaro), and ESNE,
University School of Design, Innovation and Technology (Pablo). This work has been par-
tially funded by the Spanish Ministry of Economy and Competitiveness through project
STRONGSOFT TIN2012-39391-C04-02, by the Regional Government of Madrid through
programme N-GREENS SOFTWARE S2013/ICE-2731, by the Icelandic Research Fund
through project NOSOS 141558-053 and by the European Research Council through
project RACCOON H2020-EU 714729.

References

Abadi, M., Cardelli, L., Curien, P.-L. & Lévy, J.-J. (1991) Explicit substitutions. J. Funct. Program.
1(4), 375–416.

Accattoli, B. (2016) The useful MAM, a reasonable implementation of the strong lambda-calculus.
In Proceedings of the 23rd Workshop on Logic, Language, Information and Computation. LNCS,
vol. 9803. Springer, pp. 1–21.

Accattoli, B. & Kesner, D. (2012) Preservation of strong normalisation modulo permutations for the
structural lambda-calculus. Log. Methods Comput. Sci. 8(1), 1–44.

Accattoli, B., Barenbaum, P. & Mazza, D. (2015) A strong distillery. In Proceedings of the 13th
Asian Symposium on Programming and Systems. LNCS, vol. 9458. Springer, pp. 231–250.

Ariola, Z. M., Bohannon, A. & Sabry, A. (2009) Sequent calculi and abstract machines. ACM Trans.
Program. Lang. Syst. 31(4), 13:1–13:48.

Aydemir, B., Charguéraud, A., Pierce, B. C., Pollack, R. & Weirich, S. (2008) Engineering formal
metatheory. In Proceedings of the 35th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. ACM Press, pp. 3–15.

Aydemir, B. E., Bohannon, A., Fairbairn, M., Foster, J. N., Pierce, B. C., Sewell, P., Vytiniotis, D.,
Washburn, G., Weirich, S. & Zdancewic, S. (2005) Mechanized metatheory for the masses: The
POPLmark challenge. In Proceedings of the 18th International Conference on Theorem Proving
in Higher Order Logics. LNCS, vol. 3603. Springer, pp. 50–65.

Barendregt, H. P. (1984) The Lambda Calculus, Its Syntax and Semantics. North Holland.
Barendregt, H. P. (1990) Functional programming and lambda calculus. In Chapter 7: Handbook of

Theoretical Computer Science, vol. B. Elsevier / MIT Press, pp. 321–364.
Barendregt, H. P., Kennaway, J. R., Klop, J. W. & Sleep, M. R. (1987) Needed reduction and spine

strategies for the lambda calculus. Inf. Comput. 75, 191–231.

https://doi.org/10.1017/S0956796819000017 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000017

The KN abstract machine simulates normal-order reduction in lockstep 37

Biernacka, M. & Danvy, O. (2007) A concrete framework for environment machines. ACM Trans.
Comput. Log. 9(1), 6:1–6:30.

Charguéraud, A. (2012) The locally nameless representation. J. Autom. Reas. 49(3), 363–408.
Crégut, P. (2007) Strongly reducing variants of the Krivine abstract machine. Higher-Order Symb.

Comput. 20(3), 209–230.
Curien, P.-L. (1986) Categorical Combinators, Sequential Algorithms and Functional

Programming. John Wiley & Sons.
Curien, P.-L. (1991) An abstract framework for environment machines. Theor. Comput. Sci. 82(2),

389–402.
Curien, P.-L. & Herbelin, H. (2000) The duality of computation. In Proceedings of the 5th

International Conference on Functional Programming. SIGPLAN Notices, vol. 35, issue no.9.
ACM Press, pp. 233–243.

Curien, P.-L., Hardin, T. & Lévy, J.-J. (1996) Confluence properties of weak and strong calculi of
explicit substitutions. J. ACM 43(2), 362–397.

Curry, H. B. & Feys, R. (1958) Combinatory Logic, vol. 1. North-Holland.
Danvy, O. (2009) From reduction-based to reduction-free normalization. In 6th International School

on Advanced Functional Programming, Revised Lectures. LNCS. Springer, pp. 66–164.
Danvy, O., Johannsen, J. & Zerny, I. (2011) A walk in the semantic park. In Proceedings of the

20th ACM SIGPLAN Workshop on Partial Evaluation and Program Manipulation. ACM Press,
pp. 1–12.

Danvy, O., Milikin, K. & Munk, J. (2013) A correspondence between full normalization by reduction
and full normalization by evaluation. Talk presented at A scientific meeting in honor of Pierre-
Louis Curien, Venice, 9–11 September.

de Bruijn, N. G. (1972) Lambda calculus notation with nameless dummies, a tool for automatic
formula manipulation, with application to the Church-Rosser theorem. Indagationes Math. 34(5),
381–392.

Diehl, S., Hartel, P. & Sestoft, P. (2000) Abstract machines for programming language implementa-
tion. Future Gener. Comput. Syst. 16(7), 739 – 751.

Felleisen, M. (1987) The Calculi of Lambda-v-cs Conversion: A Syntactic Theory of Control
and State in Imperative Higher-Order Programming Languages. Ph.D. thesis, Department of
Computer Science, Indiana University.

García-Pérez, Á. (2014) Operational Aspects of Full Reduction in Lambda Calculi. Ph.D. thesis,
ETSI Informáticos, Universidad Politécnica de Madrid.

García-Pérez, Á. & Nogueira, P. (2014) On the syntactic and functional correspondence between
hybrid (or layered) normalisers and abstract machines. Sci. Comput. Program. 95(Part 2),
176–199.

García-Pérez, Á., Nogueira, P. & Moreno-Navarro, J. J. (2013) Deriving the full-reducing Krivine
machine from the small-step operational semantics of normal order. In Proceedings of the 15th
International Symposium on Principles and Practice of Declarative Programming. ACM Press,
pp. 85–96.

Grégoire, B. & Leroy, X. (2002) A compiled implementation of strong reduction. In Proceedings of
the 7th International Conference on Functional Programming, vol. 37, issue no. (9), pp. 235–246.

Kahn, G. (1987) Natural semantics. In Proceedings of Symposium on Theoretical Aspects of
Computer Science. LNCS, vol. 247. Springer, pp. 22–39.

Keller, R. M. (1976) Formal verification of parallel programs. Commun. ACM 19(7), 371–384.
Kesner, D. (2007) The theory of calculi with explicit substitutions revisited. In Proceedings of

the 21st International Workshop on Computer Science Logic. LNCS, vol. 4646. Springer,
pp. 238–252.

Kesner, D. (2009) A theory of explicit substitutions with safe and full composition. Log. Methods
Comput. Sci. 5(3), 1–29.

Kiselyov, O. (2018) λ to SKI, semantically - declarative pearl. In Proceedings of the 14th
International Symposium on Functional and Logic Programming. LNCS. Springer, pp. 33–50.

https://doi.org/10.1017/S0956796819000017 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000017

38 Á. García-Pérez and P. Nogueira

Krivine, J.-L. (2007) A call-by-name lambda-calculus machine. Higher-Order Symb. Comput. 20(3),
199–207.

Lescanne, P. & Rouyer-Degli, J. (1995) Explicit substitutions with de Bruijn’s levels. In Proceedings
of the 6th International Conference on Rewriting Techniques and Applications. LNCS, vol. 914.
Springer, pp. 294–308.

Melliès, P.-A. (1995) Typed lambda-calculi with explicit substitutions may not terminate. In
Proceedings of the 2nd International Conference on Typed Lambda Calculi and Applications.
LNCS, vol. 902. Springer, pp. 328–334.

Munk, J. (2008) A Study of Syntactic and Semantic Artifacts and its Application to Lambda
Definability, Strong Normalization, and Weak Normalization in the Presence of State. M.Phil.
thesis, BRICS, Aarhus University.

Paulson, L.C. (1996) ML For the Working Programmer. 2nd ed. New York, NY: Cambridge
University Press.

Peyton-Jones, S. (1987) The Implementation of Functional Programming Languages. Prentice-Hall.
Pierce, B. (2002) Types and Programming Languages. The MIT Press.
Plotkin, G. (1975) Call-by-name, call-by-value and the lambda calculus. Theor. Comput. Sci. 1(2),

125–159.
Plotkin, G. (1981) A structural approach to operational semantics. Technical Report DAIMI FN-19.

Department of Computer Science, Aarhus University, Denmark.
Pollack, R. (1994) Closure under alpha-conversion. In Proceedings of the 1993 International

Workshop on Types for Proofs and Programs. LNCS, vol. 806. Springer, pp. 313–332.
Ronchi Della Rocca, S. & Paolini, L. (2004) The Parametric Lambda Calculus. Springer.
Scherer, G. & Rémy, D. (2015) Full reduction in the face of absurdity. Proceedings of Programming

Languages and Systems - 24th European Symposium on Programming. LNCS, vol. 9032.
Springer, pp. 685–709.

Sestoft, P. (2002) Demonstrating lambda calculus reduction. In The Essence of Computation,
Complexity, Analysis, Transformation. Essays Dedicated to Neil D. Jones. LNCS, vol. 2566.
Springer, pp. 420–435.

https://doi.org/10.1017/S0956796819000017 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000017

	The full-reducing Krivine abstract machine KN simulates pure normal-order reduction in lockstep: A proof via corresponding calculus
	Recommended Citation

	The full-reducing Krivine abstract machine KN simulates pure normal-order reduction in lockstep: A proof via corresponding calculus
	Introduction
	Contribution
	Importance of the contribution
	Structure and prerequisites of the paper

	Current nesting level, de Bruijn indices and de Bruijn levels
	Pure normal-order
	The KN machine and its improved open-terms version
	Improved open-terms KN

	The lambda-rho-tilde calculus of closures for full reduction
	On the correspondence between lambda-rho-tilde and KN

	Proof of lockstep simulation
	Related and future work

