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A B S T R A C T   

Owing to their outstanding performance, environmental friendliness and stability, perovskite materials are 
becoming very important for solar cells, renewable energy sources and thermoelectric generators. This work uses 
the first-principles approach to explore the structural, electronic, optical and elastic characteristics of K2ScCuF6 
and K2YCuF6 double perovskites. The negative formation energy in Birch-Murnaghan confirms the stability of the 
compounds in Fm3m (225) space group. The analysis of the electronic properties concluded that both K2ScCuF6 
and K2YCuF6 are narrow band gap semiconductors materials, having 1.2 and 2.3 eV of bandgap energies, 
respectively. This was further verified by the density of states. The mechanical stability, ductility and anisotropic 
nature of the compounds was shown by analyzing their elastic constants. In addition, the optical properties 
showed transparency at low energy values but showed both transmission and absorption characteristics at higher 
energy levels. These interesting results imply that K2ScCuF6 and K2YCuF6 have significant potential in solar cells, 
light-emitting diodes (LEDs), smart windows, displays and sensors.   

Introduction 

The switch to renewable energy sources and a revolution in energy 
conversion storage techniques are essential owing to the present energy 
challenges, climate change, and decline of fossil fuel supplies [1–3]. The 
fact that solar energy is widely available and reasonably priced makes it 
an excellent alternative [4,5]. To develop solar cells that are both cost- 
effective and efficient, research and innovation is still needed [6,7]. 
Numerous materials are being studied to identify novel materials with 

distinctive features [8,9]. Double Perovskites have been proved to have 
these significant features which has the potential to fascinate the re-
searchers to investigate its properties [8–12]. 

Double perovskites have a unique structure such as A2BB’X6, where 
A and B/B’ are cations and X is anion [13,14]. By adjusting the 
component elements and their corresponding oxidation states, this 
complex arrangement allows double perovskites to have exceptionally 
flexible material characteristics. By learning more about the double 
perovskites and design elements of solar cells, we aim to advance solar 
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cell technology and get closer to the goal of economical and efficient 
solar energy conversion [15–19]. The organic–inorganic hybrid lead- 
based compounds have shown high efficiency up to 22 % in double 
perovskites (CH3NH3Pb1-xCuxBr3 and CH3NH3PbX3; X  = I, Br, and Cl); 
nevertheless, they suffer from lead toxicity and instability under 
ambient conditions. To mitigate these concerns in perovskite structures, 
researchers are now looking for substitute elements [20–26]. Group IV 
elements of the same family (Sn, Ge) are thought to be a viable 
replacement for Pb in perovskite materials [27,28]. However, the sub-
stitution of Sn results in efficiency drops by 10 %, quick oxidization, 
possible health risks and Ge results in oxidization shifts to + 4 from + 2 
states, which causes the materials to decompose quickly [29]. Alterna-
tively, more stable elements such as Cs, Ag, Na, K, Cu, Bi, Sb, In, Fe, Ti, 
Pd, etc., have been studied to develop variety of lead-free perovskites or 
derivatives, including distinct perovskite structures and halide double 
perovskites [30]. Researchers from halide perovskite community 
recently suggested semiconductor compounds as a substitute substance 
that is highly stable, less toxic, and illuminates at a high intensity. This 
proposal sparked renewed interest in halide double perovskites, a class 
of quaternary materials [13,31–33]. 

Recently, M. Shihab Uddin et.al. studied the Cs2AgBiBr6 and reported 
that it has band of 1.6 eV and exhibit UV absorption peaks around 15 eV 
intensifying with photon energy up to 3.75 eV, hinting at its promise for 
solar applications [34]. Furthermore, CaPd3V4O12 is investigated and 
reported that the Fermi surface of CaPd3V4O12 ensures a kind of hole as 
well as electron faces simultaneously, indicating multifarious band 
characteristics. The prediction of the static real dielectric function (op-
tical property) of CaPd3V4O12 at zero energy implies its promising 
dielectric nature [35]. Beside this photovoltaic (PV) performance of 
Cs2BiAgI6 double perovskite is enhanced by optimizing the optoelec-
tronic parameters of the absorber, electron transport layer (ETL), hole 
transport layer (HTL), and various interface layers [36]. 

Research on the ideal material design and band gap engineering for 
solar cells and other applications is being conducted both computa-
tionally and experimentally [37–39]. Researchers often utilize computer 
simulations as a guide for modeling the most effective approaches to 
achieve their goals. This impetus strengthened our motivation to create 
materials for applications involving renewable energy. In this work, we 
investigated the structural, electronic, elastic and optical properties of 
K2ScCuF6 and K2YCuF6 compounds via density functional theory (DFT) 
specifically emphasizing how well suited they are for solar cells. To best 
our knowledge there is no study present regarding these materials. The 
structural and mechanical stability demonstrates its potential for solar 
cell applications. Therefore, we believe that our study would offer a 
solid foundation and adequate acknowledgment of utilizing such com-
pounds for energy systems. 

Computational methodology 

A computational approach known as density functional theory (DFT) 
can be used to determine various material characteristics essential to 
comprehend how these materials behave and enhance their perfor-
mance for practical manufacturing process [40]. To compute the char-
acteristics of K2ScCuF6 and K2YCuF6 compounds in this work, we utilize 
the WIEN2k code [41]. We use the Murnaghan equations of state (EoS) 
to find optimal lattice parameters as well as energy of the system [42]. 
To fully optimize the structure force convergence criterion is taken 
0.001 eV/ Å while the enrgy is converged up to 10-6 eV. Phonopy code is 
used to calculate the phonon dispersion curve. For phonon dispersion 
curve the supercell of 3 × 3 × 3 with K-mesh of 5 × 5 × 5 is used. The 
band gaps are determined with the help of well-known TB-mBJ poten-
tial, known for its precision and simplicity [43]. Elastic constants from 
IR-Elast package are used to study the elastic properties [44]. In order to 
ensure that the results of the calculations are accurate, a larger K-mesh 
(2000) is used to ensure that the charge and energy converge. In 
WIEN2k, − 6.0 Ry is the energy below, treated as core states, assuming 

no interaction between core electrons. Furthermore, Gmax of 12 and 
RMTKmax is 8 considered throughout the calculations. 

Results and discussion 

Structural properties 

Two double perovskite structures from Fm3‾m (225) space group 
can be combined to form double perovskites K2ScCuF6 and K2YCuF6 of 
cubic structure given in Fig. 1. The polyhedral structure of compound 
K2ScCuF6 and K2YCuF6 indicates the formation of octahedra, inside 
which the atoms of the Cu and Sc/Y octahedra are positioned, and each 
octahedra atom is surrounded by six F atoms. The particular Wyckoff 
positions of the atoms K, Sc/Y, Cu, and F are (1/4, 3/4, 3/4), (0, 0, 0), 
(1/2, 0, 0), and (0.24, 0, 0)/ (0.274, 0, 0), respectively. The optimization 
procedure is carried out for both compounds to find the lowest volume 
that corresponds to the energy of the ground state of the unit cell and 
other lattice parameters shown in Table 1. Fig. 2 shows the volume 
optimization for the given double perovskite compounds. The parabolic 
curves explain how energy and volume are related to one another. The 
most stable configuration of the compounds is shown by the minimal 
points of these curves corresponding to their ground state. 

Table 1 shows structural parameters and atomic sites of the unit cell 
which are necessary to understand the structural properties of the 
compounds. Bulk modulus indicates how resistant a material is to uni-
form compression and is dependent on the crystal’s structure and 
chemical composition. It describes the hardness of the compound. 
Table 1 shows that K2ScCuF6 will take more energy to compress because 
it has a higher bulk modulus (Bo) compared to K2YCuF6. To check the 
dynamic stability, we calculated the phonon dispersion curve of both 
materials (K2ScCuF6 and K2YCuF6). The obtained results are shown in 
Fig. 3 (a&b). From figure it can be observed that there are no imaginary 
peaks indicating its dynamic stability. 

Elastic properties 

Analyzing a material’s behavior under stress requires taking into 
account its mechanical stability as one of its most significant charac-
teristics. The elastic constants, which express how a material responds to 
applied forces, can be used to determine mechanical stability. In 
particular, materials with cubic symmetry require three elastic constants 
(C11, C12, and C44). The computed elastic constant values for the double 
perovskites K2ScCuF6 and K2YCuF6 are given in Table 2. The Born-Haun 
stability criteria, which include C11 > 0, C11 − C12 > 0, C11 + 2 C12 > 0, 
C12 < B < C11, and C44 > 0, are assessed for elastic constants in order to 
confirm the mechanical stability [45]. Given that the calculated elastic 
constants satisfy the conditions necessary for cubic crystals’ mechanical 
stability, these compounds are therefore mechanically stable and won’t 
collapse under the influence of interactions involving external stresses 
[46]. 

In Table 2, bulk modulus (B), shear modulus (G), Voigt shear 
modulus (Gv), Reuss shear modulus (GR), anisotropy (A), Young’s 
modulus (E), Poisson’s ratio (ν), Pugh’s ratio (B/G) were calculated via 
following equations [45,47]: 

B =
C11 + 2C12

3
(1)  

G =
Gv + GR

2
(2)  

Gv =
C11 + 3C44 − C12

5
(3)  

GR =
5(C11 − C12)C44

3(C11 − C12) + 4C44
(4) 
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E =
9GB

3B + G
(5)  

A =
2C44

C11 − C12
(6)  

ν =
3B − 2G

2(2B + G)
(7) 

Compressibility and stiffness of a material may be determined using 
two notable modules: bulk (B) and shear (G). The capacity of a material 
to resist to fracture is evaluated by B, whereas its capacity to withstand 
to plastic deformation is measured by G [48]. It is evident from the 
computed values shown in Table 2.1 that K2ScCuF6 can sustain more 

pressure than K2YCuF6 when the two compounds are compressed since 
its value of B (93.36) is greater than K2YCuF6′s (34.87). K2ScCuF6 is 
therefore more resistant to external forces than K2YCuF6. It is clear from 
the table that K2ScCuF6 (37.76) has a larger shear modulus (G) than 
K2YCuF6 (12.31), indicating that the former is tougher than the latter. It 
must be noted that the values of B obtained by analyzing the elastic 
constants are seen to differ from those obtained from volumetric strain 
versus pressure (E − V) curve. One possible explanation for this apparent 
difference is that the two approaches used different measurement 
procedures. 

Furthermore, stiffness of material is determined using Young’s 
modulus (E), and the stiffness increases with larger values of E [49]. We 
conclude that K2ScCuF6 is stiffer than K2YCuF6 based on the calculated 
values of their young moduli 99.83 and 33.04, respectively. 

Another significant factor is anisotropy that describes the directional 
dependency of material characteristics. The medium is isotropic if A = 1; 
otherwise, it is anisotropic [50]. By using the computed values shown in 
Table 2, one can determine the compounds’ anisotropic behavior. For 
instance, the predicted values for K2YCuF6 (1.53) and K2ScCuF6 (0.30) 
deviate from unity, indicating that both compounds are anisotropic and 
that K2YCuF6 is more anisotropic than K2ScCuF6. 

Fig. 1. Schematic structure of K2YCuF6 double perovskite compound.  

Table 1 
Calculated Structural Parameters of K2ScCuF6 and K2YCuF6.  

Compound a0/b0/ 
c0 

α/β/γ B0 

(GPa) 
B′ 
(GPa) 

E0 (Ry) V0 (a. 
u)3 

K2ScCuF6  10.25 Å 90◦ 65.25  4.94  − 8446.86  1051.07 
K2YCuF6  10.30 Å 90◦ 54.81  4.84  − 13689.82  1221.03  

Fig. 2. Volume optimization curves of (a) K2ScCuF6 and (b) K2YCuF6.  
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Another well-known measure of the tendency of a substance to 
experience lateral deformation in response to an axial strain is Poisson’s 
ratio (v). In other words, a compound’s ductile and brittle properties are 
determined by its Poisson ratio. Generally speaking, ductile behavior is 
indicated by a value higher than 0.26 [51]. Table 2 makes it obvious that 
K2ScCuF6 and K2YCuF6 are both ductile, with Poisson ratios of 0.45 and 
0.49, respectively. 

In a similar way, a material’s flexibility may be ascertained by 
dividing its bulk modulus (B) by its shear modulus (G), or Pugh ratio. A 
compound’s brittleness and ductility can be assessed using the Pugh 
ratio. In general, ductile materials possess a B/G ratio above 1.75 
[52,53]. The estimated B/G (2.47 for K2ScCuF6 and 2.83 for K2YCuF6) 
indicate that both K2ScCuF6 and K2YCuF6 are ductile, while K2YCuF6 
appears to be more ductile than K2ScCuF6. Thus, the mechanical prop-
erties conclude that the two compounds are ductile in nature. 

Electronic properties 

This section discusses the band structures and density of states (DOS) 
of K2ScCuF6 and K2YCuF6. The optical and electrical features of these 
materials are connected to their crystal structures through the analysis 
of band structures, which provides significant information of the con-
ductivity characteristics of the compounds. 

Fig. 4 shows the band structures of K2ScCuF6 and K2YCuF6, as 
determined by the TB-mBJ with spin orbit coupling (SOC) and without 
SOC. The two compounds’ respective band structures of 1.2 eV and 2.3 
eV make it obvious that they are semiconductors. The greater atomic 
size and less electronegativity of Y causes the band gap to expand when 
Y is substituted for Sc in K2ScCuF6, moving the minimum of conduction 
band farther from Fermi level. Beside this we also calculated the band 
structure by including the spin orbit coupling (SOC). From results it can 
be observed that by including the SOC the band gap decreases, it become 
1.13 eV for K2ScCuF6 and 2.1 eV for K2YCuF6. Research on the pro-
duction of these materials for solar cells is aided by this. 

Fig. 3. Calculated phonon dispersion curves of (a) K2ScCuF6 and (b) K2YCuF6.  

Table 2 
Elastic Parameters of K2ScCuF6 and K2YCuF6.  

Compounds C11 

(GPa) 
C12 

(GPa) 
C44 

(GPa) 
A B 

(GPa) 
Gv GR G E υ B/G 

K2ScCuF6  194.28  42.89  22.76  0.30  93.36  43.93  31.59  37.76  99.83  0.45  2.47 
K2YCuF6  47.61  28.51  14.59  1.53  34.87  12.57  12.04  12.31  33.04  0.49  2.83  

Fig. 4. Band structure with SOC and without SOC of double perovskites (a) K2ScCuCl6 and (b) K2YCuCl6.  
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The distribution of energy levels is described by the DOS and shows 
the characteristics of the band gap to help understand electrical 
behavior. The valence and conduction bands are separated Fermi energy 
(EF), with valence band having filled low-energy levels while conduction 
band having vacant levels above EF. 

In Fig. 5, Sc/Y and halogen atoms significantly impact conduction 
band, whereas Cu and halogen atoms (F) mostly contribute to the 
valence band. The K contribution is also noticeable in the conduction 
band of the K2YCuF6 compound. This implies that Cu and halogen or-
bitals give birth to occupied energy levels, while Y/Sc orbitals are the 
source of unoccupied energy levels. 

Optical properties 

An optical characteristic is the way a material interacts with light, 
and it is very important in optoelectronics, photonics, and optics. The 
dielectric function, refractive index, refraction, reflection, optical con-
ductivity and absorption are the examples of fundamental characteris-
tics. The obtained ε1(ω) and ε2 (ω) of the two compounds within energy 
range of 0 eV to 14 eV of incoming photon are displayed in Fig. 6. Wave 
damping and energy dissipation are represented by ε1(ω), whereas po-
larization and energy storage are represented by ε2(ω). In comparison to 
K2YCuF6 (1.36), K2ScCuF6 dissipates more energy (2.18), according to 
static dielectric function ε1(0). The compounds had maximum values of 
ε2(ω) of 3.4 at 8.15 eV and 2.3 at 9.8 eV, respectively. 

Refractive index is a property of materials that depends on compo-
sition and structure to determine how light passes through them. The 
ε1(ω) and ε2(ω) values derived from dielectric function are utilized to 
determine a material’s refractive index. The refractive indices for 
K2ScCuF6 and K2YCuF6 are given in Fig. 7(a). The static refractive index 
n(0), for K2ScCuF6 and K2YCuF6 are 1.47 and 1.17, respectively. 
K2ScCuF6 has 2.01 peak value at about 8.04 eV of photon energy, ac-
cording to n(ω) spectrum, whereas K2YCuF6 shows 1.75 peak value at 
approximately 9.72 eV. In applications involving light refraction, 
especially in photoelectric applications, n(0) is significant. When n(ω) is 
greater than 1, photons interact with electrons and slow down when 
they enter a material. This results in prolonging the time it takes for the 
photons to pass through the material. The rise of electrical density of a 
substance can also causes its refractive index to rise. 

The calculated reflectivity R (ω) of K2ScCuF6 and K2YCuF6, given in 
Fig. 7(b). At zero frequency R(0), the reflectance of K2ScCuF6 is 0.37, 
whereas that of K2YCuF6 is 0.0059. Both compounds exhibit a rise in 
reflectance with photon energy increase. At around 13.56 eV, they 
achieve their highest reflectivity of 0.48 and 0.25, respectively. In the 
observed energy range, K2ScCuF6 and K2YCuF6 both show exceptionally 
low reflectance. These are highly transparent to the incoming photons 
because of their low level of reflectance, which is compatible with their 
band gap. These materials are promising because of their great 

transparency, which is favorable for uses like solar cells and optics, 
where effective light transmission is required. The absorbance curves 
obtained for the chosen compounds K2ScCuF6 and K2YCuF6 by the ε(ω) 
method are shown in Fig. 7(c). Significant absorption is seen by these 
materials in 0 to 14 eV energy range. The absorption thresholds indicate 
the point at which certain materials start to absorb electromagnetic 
radiation, and they are found at 0 eV. K2YCuF6 has a maximum ab-
sorption of 119.47 at 12.15 eV photon energy value, whereas K2ScCuF6 
shows a maximum absorption value of 132.48 at 13.56 eV. This illus-
trates the degree to which particular substances may absorb light within 
a specified energy range. 

In Fig. 7(d), highest optical conductivity value of K2ScCuF6 is about 
3981 Ω− 1 cm− 1 at 11.5 eV, whereas K2YCuF6 displays a significant value 
of around 3621 Ω− 1 cm− 1 at 12.0 eV. This suggests that certain sub-
stances, particularly at higher energies, exhibit outstanding optical 
conductivity. They are attractive options for use in telecommunications, 
photonics and other cutting-edge optoelectronic technologies due to 
their advantageous optical conductivity properties [54]. 

Conclusion 

The structural, electronic, optical, and elastic characteristics of the 
double perovskite compounds K2ScCuF6 and K2YCuF6 are investigated 
by the using DFT simulations. The fitted curve for the Birch Murnaghan 
equation of state (EOS) and negative formations energy indicate that 
both structures are stable and can fabricated. Furthermore, it is observed 
that K2ScCuF6 has a higher bulk modulus compared to K2YCuF6. 
K2ScCuF6 and K2YCuF6 compounds have 1.2 and 2.3 eV small band gaps, 
respectively, which are revealed by analyzing the electronic properties 
via precise TB-mBJ approximation. In addition, mechanical analysis 
revealed ductile, anisotropic and mechanical stability of the compounds. 
Through optical studies, one can acquire a thorough insight of the 
compounds’ behavior in numerous areas of their characteristics, 
including transparency at lower energy values and notable transmission 
and absorption at higher energies. These interesting results imply that 
K2ScCuF6 and K2YCuF6 have significant potential in solar cells, light- 

Fig. 5. Calculated DOS of double perovskites (a) K2ScCuF6 and (b) K2YCuF6.  

Fig. 6. Calculated (a) ε1(ω) and (b) ε2(ω) of K2ScCuF6 and K2YCuF6.  
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emitting diodes (LEDs), smart windows, displays and sensors. 
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